Задать вопрос

Найдите все пары натуральных чисел, НОД которых равен 24 а НОК - 360. В ответ укажите количество таких пар

+3
Ответы (1)
  1. 11 августа, 16:12
    0
    Возьмем числа 72 и 120.

    Сначала разложим число 72 на простые множители.

    Это равно 72=2*2*2*3*3

    Теперь разложим число 120

    120=2*2*2*3*5

    Обратим внимание на одинаковые простые множители в обоих числах.

    2, 2, 2, 3

    Находим их произведение; 2*2*2*3=24

    НОД (72; 120) = 2*2*2*3 = 24
Знаешь ответ на этот вопрос?
Сомневаешься в правильности ответа?
Получи верный ответ на вопрос 🏆 «Найдите все пары натуральных чисел, НОД которых равен 24 а НОК - 360. В ответ укажите количество таких пар ...» по предмету 📕 Математика, используя встроенную систему поиска. Наша обширная база готовых ответов поможет тебе получить необходимые сведения!
Найти готовые ответы
Похожие вопросы математике
Найдите наибольший делитель чисел (нод) : 1) нод 8 2 нод 8 3 нод 8 4 нод 8 5 нод 8 6 нод 8 7 нод 8 10 нод 8 12 2) нод 12 6 нод 12 9 нод 12 15 нод 12 16 нод 12 18 нод 12 24 нод 12 25 нод 12 27 3) нод 11 5 нод 11 10 нод 11 22 нод 11 110 нод 11 121 нод
Ответы (1)
Нок (9 и 14), НОД (48 и 60), НОК (20 и 16), НОД (45,30), НОД (15,16), НОК (10,12), НОД (28,42), НОК (15,20), НОК (12,18), НОД (20,60), НОК (24,16), НОД (72,108), НОК (6,4), НОК (9,8), НОК (4,10), НОД (240,640), НОК (9,4), НОД (120,180), НОД
Ответы (1)
Найдите: а) НОК и НОД (6; 9) б) НОК и НОД (10; 14) в) НОК и НОД (10; 6) г) НОК и НОД (5; 25) д) НОК и НОД (24; 6) е) НОК и НОД (7; 10) ж) НОК и НОД (2; 11) з) НОК и НОД (2; 5; 7) и) НОК и НОД (2; 4; 7)
Ответы (1)
Нод (48 и 450) Нод (270 и 450) Нод (48 и 250) Нод (270 и 250) Нок (12 и 20) Нок (12 и 30) Нок (15 и 25) Нок (72 и 9) Нок (12 и 15) Нок (18 и 15) Нок (15 и 30) Нок (20 и 25) Нок (48 и 6) Нок (175 и 25) Нок (72 и 9) Нок (72 и 8) Нок (400 и 100) Нок
Ответы (1)
НОД (15; 3) НОД (8; 15) НОД (15; 25) НОД (15; 35) НОД (15; 35) НОД (15; 42) НОД (15; 53) НОД (11; 7) НОД (11; 10) НОД (11; 55) НОД (11; 121) НОД (11; 333) НОД (14; 6) НОД (14; 28) НОД (14; 21) НОД (14; 35) НОД (14; 997)
Ответы (1)