Задать вопрос

Решить уравнения (x^2-14) ^2+3 (x^2-14) - 10=0

+4
Ответы (1)
  1. Для решения уравнения (х^2 - 14) ^2 + 3 (х^2 - 14) - 10 = 0 будем использовать метод выведения новой переменной;

    введём новую переменную х^2 - 14 = у;

    y^2 + 3 у - 10 = 0;

    D = b^2 - 4ac;

    D = 3^2 - 4 * 1 * ( - 10) = 9 + 40 = 49; √D = √49 = 7;

    x = ( - b ± √D) / (2a);

    y1 = ( - 3 + 7) / (2 * 1) = 4/2 = 2;

    у2 = ( - 3 - 7) / (2 * 1) = - 10/2 = - 5.

    Выполним обратную подстановку:

    1) х^2 - 14 = 2;

    х^2 = 2 + 14;

    х^2 = 16;

    х = ± √16;

    х1 = 4; х2 = - 4.

    2) х^2 - 14 = - 5;

    х^2 = - 5 + 14;

    х^2 = 9;

    х = ± √9;

    х3 = 3; х4 = - 3.

    Ответ. - 4; - 3; 3; 4.
Знаешь ответ на этот вопрос?
Сомневаешься в правильности ответа?
Получи верный ответ на вопрос 🏆 «Решить уравнения (x^2-14) ^2+3 (x^2-14) - 10=0 ...» по предмету 📕 Математика, используя встроенную систему поиска. Наша обширная база готовых ответов поможет тебе получить необходимые сведения!
Найти готовые ответы
Похожие вопросы математике
Найдите корень уравнения 2 (b+4) - 1=-3 Упростите - 8-2 (1-b) - 2b+1 Найдите корень уравнения 16c+20=7c+74 Найдите корень уравнения 2X+22=-6x-26 Найдите корень уравнения 22-4 (d-6) = 26 Найдите корень уравнения 0.1x+1.2=2.
Ответы (1)
Найдите корни уравнения x2+4=5x. Найдите корни уравнения x2+3x-18=0. Найдите корни уравнения x2+3x=18. Найдите корни уравнения x2+6=5x. Найдите корни уравнения 5x2+20x=0. Решите уравнение x2-5x-14=0.
Ответы (1)
1. Найдите корень уравнения - 80=5 (х+7) 2. Решите уравнение 5-2 х=11-7 (х+2) 3. Найдите корень уравнения х^2-16=0. Если уравнение имеет более одного корня, в ответ запишите меньший из корней 4. Найдите корень уравнения 3 х^2=27 х.
Ответы (1)
Как решить уравнения 1) x:12+524=1000, как решить уравнения 1) x:12+524=1000, 2) 1022 - (34x-5895) = 15, 3) (x+296) * 84=9758+16114, 4) 1971:x-439 = (234*109) : 117 как их решить?
Ответы (1)
по теме "Квадратные уравнения". Решить уравнения: а) 14 х2 - 9 х = 0; б) 16 х2 = 49; в) 2 х2 - 11 х + 12 = 0; г) х2 - 36 х + 324 = 0; д) 2 х2 + х + 16 = 0; е) (х^ (2) - 7 х) / 8-1=0. Решить биквадратное уравнение: х4 - 13 х2 + 36 = 0.
Ответы (2)