Задать вопрос

НОД и НОК чисел 2000 7000

+3
Ответы (1)
  1. 7 февраля, 09:12
    0
    Запишем первое число, что представлено в условии нашей задачи, в виде произведения надлежащих множителей:

    2000 = 2 * 2 * 5 * 2 * 5 * 2 * 5.

    Запишем второе число, что представлено в условии нашей задачи, в виде произведения надлежащих множителей:

    7000 = 7 * 2 * 5 * 2 * 5 * 2 * 5.

    Выпишем совпадающие в двух произведениях множители:

    2, 2, 2, 5, 5, 5.

    Следовательно, НОДом этих чисел является:

    2 * 5 * 2 * 5 * 2 * 5 = 1000.

    А НОКом будет:

    2 * 5 * 2 * 5 * 2 * 5 * 2 * 7 = 14000.

    Ответ: НОД = 1000, НОК = 14000.
Знаешь ответ на этот вопрос?
Сомневаешься в правильности ответа?
Получи верный ответ на вопрос 🏆 «НОД и НОК чисел 2000 7000 ...» по предмету 📕 Математика, используя встроенную систему поиска. Наша обширная база готовых ответов поможет тебе получить необходимые сведения!
Найти готовые ответы
Похожие вопросы математике
Найдите наибольший делитель чисел (нод) : 1) нод 8 2 нод 8 3 нод 8 4 нод 8 5 нод 8 6 нод 8 7 нод 8 10 нод 8 12 2) нод 12 6 нод 12 9 нод 12 15 нод 12 16 нод 12 18 нод 12 24 нод 12 25 нод 12 27 3) нод 11 5 нод 11 10 нод 11 22 нод 11 110 нод 11 121 нод
Ответы (1)
Нок (9 и 14), НОД (48 и 60), НОК (20 и 16), НОД (45,30), НОД (15,16), НОК (10,12), НОД (28,42), НОК (15,20), НОК (12,18), НОД (20,60), НОК (24,16), НОД (72,108), НОК (6,4), НОК (9,8), НОК (4,10), НОД (240,640), НОК (9,4), НОД (120,180), НОД
Ответы (1)
Найдите: а) НОК и НОД (6; 9) б) НОК и НОД (10; 14) в) НОК и НОД (10; 6) г) НОК и НОД (5; 25) д) НОК и НОД (24; 6) е) НОК и НОД (7; 10) ж) НОК и НОД (2; 11) з) НОК и НОД (2; 5; 7) и) НОК и НОД (2; 4; 7)
Ответы (1)
Нод (48 и 450) Нод (270 и 450) Нод (48 и 250) Нод (270 и 250) Нок (12 и 20) Нок (12 и 30) Нок (15 и 25) Нок (72 и 9) Нок (12 и 15) Нок (18 и 15) Нок (15 и 30) Нок (20 и 25) Нок (48 и 6) Нок (175 и 25) Нок (72 и 9) Нок (72 и 8) Нок (400 и 100) Нок
Ответы (1)
НОД (15; 3) НОД (8; 15) НОД (15; 25) НОД (15; 35) НОД (15; 35) НОД (15; 42) НОД (15; 53) НОД (11; 7) НОД (11; 10) НОД (11; 55) НОД (11; 121) НОД (11; 333) НОД (14; 6) НОД (14; 28) НОД (14; 21) НОД (14; 35) НОД (14; 997)
Ответы (1)