Задать вопрос

Вычислительной (1+2i) ^2 (i-2) ^2

+4
Ответы (1)
  1. 13 февраля, 23:11
    0
    Нам нужно найти произведение двух выражений (1 + 2i) ^2 * (i - 2) ^2, которые содержат комплексное число.

    Давайте вспомни, что i^2 = - 1.

    Применим к каждой скобке формулу сокращенного умножения квадрат суммы и квадрат разности:

    (1 + 2i) ^2 = 1^2 + 2 * 1 * 2i + (2i) ^2 = 1 + 4i + 4i^2 = 1 + 4i - 4 = 4i - 3.

    (i - 2) ^2 = i^2 - 2 * i * 2 + 2^2 = 1 - 4i + 4 = 5 - 4i.

    Найдем теперь произведение скобок:

    (4i - 3) (5 - 4i) = 4i * 5 - 4i * 4i - 3 * 5 + 3 * 4i = 20i - 16i^2 - 15 + 12i = - 16 * (-1) ^2 - 15 + 20i + 12i = 16 - 15 + 32i = 1 + 32i.
Знаешь ответ на этот вопрос?
Сомневаешься в правильности ответа?
Получи верный ответ на вопрос 🏆 «Вычислительной (1+2i) ^2 (i-2) ^2 ...» по предмету 📕 Математика, используя встроенную систему поиска. Наша обширная база готовых ответов поможет тебе получить необходимые сведения!
Найти готовые ответы