Задать вопрос

A^3+1 ≥ a^2+a при а ≥ 1

+2
Ответы (1)
  1. 22 октября, 22:01
    0
    A ^ 3 + 1 ≥ a ^ 2 + a при а ≥ 1;

    A ^ 3 + 1 ≥ a ^ 2 + a;

    A ^ 3 + 1 ^ 3 ≥ a ^ 2 + a;

    (a + 1) * (a ^ 2 - a * 1 + 1 ^ 2) > = a ^ 2 + a;

    (a + 1) * (a ^ 2 - a + 1) > = a ^ 2 + a;

    (a + 1) * (a ^ 2 - a + 1) > = a * (a + 1);

    (a + 1) * (a ^ 2 - a + 1) / (a + 1) > = a * (a + 1) / (a + 1);

    1 * (a ^ 2 - a + 1) / 1 > = a * 1 / 1;

    a ^ 2 - a + 1 > = a;

    a ^ 2 - a + 1 - a > = 0;

    a ^ 2 + 1 > = 0;

    Так как, а > = 1, к примеру берем а = 2, тогда:

    2 ^ 2 + 1 > = 0;

    5 > = 0;

    Верно.
Знаешь ответ на этот вопрос?
Сомневаешься в правильности ответа?
Получи верный ответ на вопрос 🏆 «A^3+1 ≥ a^2+a при а ≥ 1 ...» по предмету 📕 Математика, используя встроенную систему поиска. Наша обширная база готовых ответов поможет тебе получить необходимые сведения!
Найти готовые ответы