Задать вопрос
9 марта, 00:41

Найдите в) НОД (2; 11) и НОК (2; 11

+4
Ответы (1)
  1. 9 марта, 03:50
    0
    Чтобы найти наименьшее общее кратное или наибольший общий делитель нескольких чисел, нужно разложить их на простые множители, то есть на множители, которые являются простыми числами.

    Числа 2 и 11 сами по себе являются простыми, так как делятся только на 1 и на самих себя, поэтому их раскладывать нет необходимости.

    Наименьшее общее кратное двух чисел равно произведению одного из этих чисел и тех множителей в разложении второго, которых нет в разложении первого. В нашем случае общих множителей нет, поэтому наименьшее общее кратное данных чисел равно их произведению.

    НОК (2, 11) = 2 * 11 = 22.

    Наибольший общий делитель двух чисел равен произведению общих множителей в разложении этих чисел. Так как числа 2 и 11 не имеют общих множителей, их наибольший общий делитель равен 1.

    НОД (2, 11) = 1.
Знаешь ответ на этот вопрос?
Сомневаешься в правильности ответа?
Получи верный ответ на вопрос 🏆 «Найдите в) НОД (2; 11) и НОК (2; 11 ...» по предмету 📕 Математика, используя встроенную систему поиска. Наша обширная база готовых ответов поможет тебе получить необходимые сведения!
Найти готовые ответы
Похожие вопросы математике
Найдите наибольший делитель чисел (нод) : 1) нод 8 2 нод 8 3 нод 8 4 нод 8 5 нод 8 6 нод 8 7 нод 8 10 нод 8 12 2) нод 12 6 нод 12 9 нод 12 15 нод 12 16 нод 12 18 нод 12 24 нод 12 25 нод 12 27 3) нод 11 5 нод 11 10 нод 11 22 нод 11 110 нод 11 121 нод
Ответы (1)
Нок (9 и 14), НОД (48 и 60), НОК (20 и 16), НОД (45,30), НОД (15,16), НОК (10,12), НОД (28,42), НОК (15,20), НОК (12,18), НОД (20,60), НОК (24,16), НОД (72,108), НОК (6,4), НОК (9,8), НОК (4,10), НОД (240,640), НОК (9,4), НОД (120,180), НОД
Ответы (1)
Найдите: а) НОК и НОД (6; 9) б) НОК и НОД (10; 14) в) НОК и НОД (10; 6) г) НОК и НОД (5; 25) д) НОК и НОД (24; 6) е) НОК и НОД (7; 10) ж) НОК и НОД (2; 11) з) НОК и НОД (2; 5; 7) и) НОК и НОД (2; 4; 7)
Ответы (1)
Нод (48 и 450) Нод (270 и 450) Нод (48 и 250) Нод (270 и 250) Нок (12 и 20) Нок (12 и 30) Нок (15 и 25) Нок (72 и 9) Нок (12 и 15) Нок (18 и 15) Нок (15 и 30) Нок (20 и 25) Нок (48 и 6) Нок (175 и 25) Нок (72 и 9) Нок (72 и 8) Нок (400 и 100) Нок
Ответы (1)
НОД (15; 3) НОД (8; 15) НОД (15; 25) НОД (15; 35) НОД (15; 35) НОД (15; 42) НОД (15; 53) НОД (11; 7) НОД (11; 10) НОД (11; 55) НОД (11; 121) НОД (11; 333) НОД (14; 6) НОД (14; 28) НОД (14; 21) НОД (14; 35) НОД (14; 997)
Ответы (1)