Задать вопрос

270 и 324 и 540 найти нок

+2
Ответы (1)
  1. 21 августа, 12:03
    0
    НОД (270, 324, 540), необходимо разложить числа на простые множители и выделить общие множители чисел:

    270 = 2 * 3 * 3 * 3 * 5

    324 = 2 * 2 * 3 * 3 * 3 * 3

    540 = 2 * 2 * 3 * 3 * 3 * 5

    Таким образом общие множители чисел 2 * 3 * 3 * 3

    Чтобы найти НОД чисел, перемножим найденные общие множители:

    НОД (270, 324, 540) = 2 * 3 * 3 * 3 = 54
Знаешь ответ на этот вопрос?
Сомневаешься в правильности ответа?
Получи верный ответ на вопрос 🏆 «270 и 324 и 540 найти нок ...» по предмету 📕 Математика, используя встроенную систему поиска. Наша обширная база готовых ответов поможет тебе получить необходимые сведения!
Найти готовые ответы
Похожие вопросы математике
Нод (48 и 450) Нод (270 и 450) Нод (48 и 250) Нод (270 и 250) Нок (12 и 20) Нок (12 и 30) Нок (15 и 25) Нок (72 и 9) Нок (12 и 15) Нок (18 и 15) Нок (15 и 30) Нок (20 и 25) Нок (48 и 6) Нок (175 и 25) Нок (72 и 9) Нок (72 и 8) Нок (400 и 100) Нок
Ответы (1)
Найдите наименьшее общее кратное чисел (НОК) А) НОК (6; 15) = б) НОК (12; 18) = В) НОК (27; 36) = Г) НОК (5; 10; 16) = Д) НОК (15; 75; 60; 300) = Е) НОК (2; 13678) = Ж) НОК (357; 3) = З) НОК (432; 9) = И) НОК (702; 9; 2) = К) НОК 12; 48; 96; 108) =
Ответы (1)
Нок (9 и 14), НОД (48 и 60), НОК (20 и 16), НОД (45,30), НОД (15,16), НОК (10,12), НОД (28,42), НОК (15,20), НОК (12,18), НОД (20,60), НОК (24,16), НОД (72,108), НОК (6,4), НОК (9,8), НОК (4,10), НОД (240,640), НОК (9,4), НОД (120,180), НОД
Ответы (1)
Найди. (НОК - наименьшее общее кратное) А) НОК (162,216). Б) НОК (350,400) В) НОК (60,220). Г) НОК (23,47) Д) НОК (495,33). Е) НОК (300,270) Ж) НОК (441, 4410). З) НОК (68,102,136)
Ответы (1)
НОК (4 И 10) = НОК (6 И 14) = НОК (8 И 12) = НОК (15 И 18) = НОК (20 И 24) = НОК (26 И 39) = НОК (120 И 300 И 100) = НОК (480 И 216 И 144) = НОК (105 И 350 И 140) = НОК (280 И 140 И 224) =
Ответы (1)