Задать вопрос
22 ноября, 20:18

Найдите максимальное целое число x, для которого существует целое y, такое что пара (x, y) является решением уравнения x^2-xy-2y^2=9

+5
Ответы (2)
  1. 22 ноября, 21:22
    0
    Нам задано выражение x^2 - xy - 2y^2 = 9, известно, что х и у - целые числа.

    Найдем пару максимальное целых чисел (х; у) для которых выполняется данное равенство.

    Решать задачу будем по алгоритму:

    разложим выражение в левой части уравнения на множители; подберем возможные значения для множителей из левой части уравнения; находим целые решения уравнения; выбираем максимальное целое решение уравнения. Разложим на множители левую часть равенства

    Чтобы разложить на множители выражение в левой части уравнения представим слагаемое - ху в виде: ху - 2 ху, получим:

    x^2 + xy - 2xy - 2y^2 = 9;

    x (x + y) - 2y (x + y) = 9;

    (x + y) (x - 2y) = 9.

    Так как корнями уравнения являются целые числа, то и выражения (х + у) и (х - 2 у) - целые числа.

    Подбираем возможные значения множителей левой части уравнения и находим целые решения

    В правой части уравнения разложим на простые множители число 9.

    9 = 1 * 9 = ( - 1) * ( - 9) = 3 * 3 = ( - 3) * ( - 3).

    Значит возможны такие варианты значений выражений:

    х + у = ∓ 1, а х - 2 у = ∓ 9;

    Последовательно найдем разность каждого из выражений:

    (х + у) - (х - 2 у) = х + у - х + 2 у = 3 у = ∓ 8;

    3 у = ∓ 8;

    у = ∓ 8/3 - в результате мы получаем у не целым числом.

    х + у = ∓ 9, а х - 2 у = ∓ 1.

    (х + у) - (х - 2 у) = х + у - х + 2 у = 3 у = ∓ 8;

    3 у = ∓ 8;

    у = ∓ 8/3 - у не целое число.

    Остается только один вариант:

    х + у = ∓ 3; х - 2 у = ∓ 3.

    Находим разность выражений:

    (х + у) - (х - 2 у) = х + у - х + 2 у = 3 у = 0.

    3 у = 0;

    у = 0.

    Данное решение нам подходит (так как ноль является целым числом).

    Найдем значение переменной х.

    х + у = ∓ 3;

    х = ∓ 3.

    Выбираем максимальное целое решение уравнения

    Целым решение уравнений является две пары чисел ( - 3; 0) и (3; 0).

    Пара максимально целых чисел (3; 0).

    Ответ: (3; 0).
  2. 22 ноября, 23:13
    0
    Решим уравнение x^2 - xy - 2y^2 = 9 как квадратное относительно х:

    x^2 - xy - 2y^2 - 9 = 0;

    D = ( - у) ^2 - 4 * ( - 2y^2 - 9) = у^2 + 8 у^2 + 36 = 9 (у^2 + 4).

    Из двух возможных значений х наибольшим будет то, которое вычисляется по формуле со знаком плюс перед дискриминантом:

    х = ( - ( - у) + √ (9 (у^2 + 4))) / (2 * 1) = (у + 3√ (у^2 + 4)) / 2.

    Так как х и у должны быть целыми числами, то значение выражения должно быть хотя бы рациональным числом, что возможно только при у = 0:

    х = (0 + 3 * √ (0^2 + 4)) / 2 = 6 / 2 = 3.

    Ответ: 3.
Знаешь ответ на этот вопрос?
Сомневаешься в правильности ответа?
Получи верный ответ на вопрос 🏆 «Найдите максимальное целое число x, для которого существует целое y, такое что пара (x, y) является решением уравнения x^2-xy-2y^2=9 ...» по предмету 📕 Математика, используя встроенную систему поиска. Наша обширная база готовых ответов поможет тебе получить необходимые сведения!
Найти готовые ответы
Похожие вопросы математике
Укажите, верно ли утверждение. Утверждение: 1) 3/7 - положительное число. ДА; НЕТ. 2) 3/7 - рациональное число. ДА; НЕТ. 3) 3/7 - неотрицательное число. ДА; НЕТ. 4) 3/7 - неположительное число. ДА; НЕТ. 5) - 8 - отрицательное число. ДА; НЕТ.
Ответы (1)
Даны два линейных уравнения с двумя переменными: х-у=2 и х+у=8 Найдите пару чисел которая: а) является решением первого уравнения, но не является решением второго; б) является решением второго, но нерешением первого;
Ответы (1)
Существует ли: а) наибольшие натуральное число; б) наименьшие натуральное число; в) наибольшее отрицательное целое число; г) наименьшее отрицательное целое число; д) наибольшее целое число; е) наименьшее целое число?
Ответы (1)
Отметь истинные высказывания для неравенств: 7+Х 11 число 10 является решением обоих неравенств. Число 12 является решением первого неравенства. Число 14 является решением второго неравенства.
Ответы (1)
При каком значении a решением уравнения 2x+ay=18, является пара чисел (т; - 2 т), если эта пара является решением и уравнения x-y=9?
Ответы (1)