Задать вопрос

Придумайте число при делении которого на 15 получается остаток 5

+3
Ответы (1)
  1. 13 февраля, 17:48
    0
    Таких чисел очень много, и можно выбрать любое из них. Сначала нужно умножить 15 на любое число, после чего сделать так, чтобы при делении не получилось круглое число, а остался остаток. Для этого просто прибавляем к полученному произведению нужное число, в данном случае пять. Например:

    15 * 2 + 5 = 35

    15 * 5 + 5 = 80

    15 * 10 + 5 = 155

    В любых полученных числах при делении на 15 получится остаток 5.

    Ответ: 35; 80; 155 и т. д.
Знаешь ответ на этот вопрос?
Сомневаешься в правильности ответа?
Получи верный ответ на вопрос 🏆 «Придумайте число при делении которого на 15 получается остаток 5 ...» по предмету 📕 Математика, используя встроенную систему поиска. Наша обширная база готовых ответов поможет тебе получить необходимые сведения!
Найти готовые ответы
Похожие вопросы математике
Найдите наибольшее из четырехзначных чисел, которые при делении на 3 дают в остатке 1, при делении на 4 дают в остатке 2, при делении на 5 дают в остатке 3, при делении на 6 дают в остатке 4, при делении на 7 дают в остатке 5, при делении на 8 дают
Ответы (2)
Коля изменяет записанное число по следующему правилу. Если число делится на 5 то коля вычитает из него 1. если число дает остаток 4 при делении на 5 то вычитает из числа 3. Если число дает остаток 3 при делении на 5 то прибавляет к числу 3.
Ответы (1)
1) При делении одного и того же числа на 5 и на 9 получаются одинаковые частные, но при делении на 5 получается остаток 4, а деление на 9 выполняется без остатка.
Ответы (1)
Сколько различных остатков может быть получено при делении на 4? 1) 2 2) 3 3) 4. Найди частное и остаток при делении числа 7 на число9. 1) частное 9, остаток 7. 2) частное 0, остаток 7. 3) частное 0, остаток 0.
Ответы (1)
Найдите и занесите в строку ответа наибольшее из четырехзначных чисел, которые при делении на 3 дают в остатке 1, при делении на 4 дают в остатке 2, при делении на 5 дают в остатке 3, при делении на 6 дают в остатке 4, при делении на 7 дают в
Ответы (1)