Задать вопрос

Найдите НОК (a; b), если a=2*3*3*5*5; b=3*5*7*7*7

+1
Ответы (1)
  1. 28 августа, 13:14
    0
    Для того, чтобы найти наименьшее общее кратное (НОК) данных натуральных чисел, раскладываем числа на простые множители, затем необходимо перемножить все простые множители первого числа и умножить на те простые множители, которых не хватает в первом числе среди простых множителей второго.

    Дано разложение двух чисел а и b на простые множители:

    a = 2 * 3 * 3 * 5 * 5; b = 3 * 5 * 7 * 7 * 7;

    Имеем: НОК (a; b) = 2 * 3 * 3 * 5 * 5 * 7 * 7 * 7 = 154350;

    Ответ: 154350.
Знаешь ответ на этот вопрос?
Сомневаешься в правильности ответа?
Получи верный ответ на вопрос 🏆 «Найдите НОК (a; b), если a=2*3*3*5*5; b=3*5*7*7*7 ...» по предмету 📕 Математика, используя встроенную систему поиска. Наша обширная база готовых ответов поможет тебе получить необходимые сведения!
Найти готовые ответы
Похожие вопросы математике
Нод (48 и 450) Нод (270 и 450) Нод (48 и 250) Нод (270 и 250) Нок (12 и 20) Нок (12 и 30) Нок (15 и 25) Нок (72 и 9) Нок (12 и 15) Нок (18 и 15) Нок (15 и 30) Нок (20 и 25) Нок (48 и 6) Нок (175 и 25) Нок (72 и 9) Нок (72 и 8) Нок (400 и 100) Нок
Ответы (1)
Найдите наименьшее общее кратное чисел (НОК) А) НОК (6; 15) = б) НОК (12; 18) = В) НОК (27; 36) = Г) НОК (5; 10; 16) = Д) НОК (15; 75; 60; 300) = Е) НОК (2; 13678) = Ж) НОК (357; 3) = З) НОК (432; 9) = И) НОК (702; 9; 2) = К) НОК 12; 48; 96; 108) =
Ответы (1)
Нок (9 и 14), НОД (48 и 60), НОК (20 и 16), НОД (45,30), НОД (15,16), НОК (10,12), НОД (28,42), НОК (15,20), НОК (12,18), НОД (20,60), НОК (24,16), НОД (72,108), НОК (6,4), НОК (9,8), НОК (4,10), НОД (240,640), НОК (9,4), НОД (120,180), НОД
Ответы (1)
Найдите наименьшее общее кратное число (НОК) а) НОК (6; 15) б) НОК (12; 18) в) НОК (27; 36) г) НОК (5; 10; 16) д) НОК (15; 75; 60; 300) е) НОК (2; 13678) ж) (357; 3) з) НОК (432; 9) и) НОК (702; 9; 2) к) НОК (12; 48; 96; 108)
Ответы (1)
НОК (4 И 10) = НОК (6 И 14) = НОК (8 И 12) = НОК (15 И 18) = НОК (20 И 24) = НОК (26 И 39) = НОК (120 И 300 И 100) = НОК (480 И 216 И 144) = НОК (105 И 350 И 140) = НОК (280 И 140 И 224) =
Ответы (1)