Задать вопрос
12 января, 04:51

Найдите НОК (630; 252)

+1
Ответы (1)
  1. 12 января, 07:23
    0
    Для нахождения наименьшего общего кратного (это минимальное число из всех возможных, которое одновременно делится на заданные числа), разложим числа 630 и 252 на простые множители. Под простыми числами понимаются те числа, что кратны лишь себе и единице (например, 2, 3, 5 и т. д.).

    630 = 2 · 3 · 3 · 5 · 7; 252 = 2 · 2 · 3 · 3 · 7. Далее, в разложение числа 630 добавим множитель 2 из числа 252 (так как в разложении 630 = 2 · 3 · 3 · 5 · 7 только одна двойка, а в разложении 252 = 2 · 2 · 3 · 3 · 7 их две). Остальные множители числа 252 присутствуют в разложении 630. Вычислив полученное произведение, мы найдем НОК (630; 252) : НОК (630; 252) = 2 · 3 · 3 · 5 · 7 · 2 = 1260.
Знаешь ответ на этот вопрос?
Сомневаешься в правильности ответа?
Получи верный ответ на вопрос 🏆 «Найдите НОК (630; 252) ...» по предмету 📕 Математика, используя встроенную систему поиска. Наша обширная база готовых ответов поможет тебе получить необходимые сведения!
Найти готовые ответы
Похожие вопросы математике
Нод (48 и 450) Нод (270 и 450) Нод (48 и 250) Нод (270 и 250) Нок (12 и 20) Нок (12 и 30) Нок (15 и 25) Нок (72 и 9) Нок (12 и 15) Нок (18 и 15) Нок (15 и 30) Нок (20 и 25) Нок (48 и 6) Нок (175 и 25) Нок (72 и 9) Нок (72 и 8) Нок (400 и 100) Нок
Ответы (1)
Найдите наименьшее общее кратное чисел (НОК) А) НОК (6; 15) = б) НОК (12; 18) = В) НОК (27; 36) = Г) НОК (5; 10; 16) = Д) НОК (15; 75; 60; 300) = Е) НОК (2; 13678) = Ж) НОК (357; 3) = З) НОК (432; 9) = И) НОК (702; 9; 2) = К) НОК 12; 48; 96; 108) =
Ответы (1)
Нок (9 и 14), НОД (48 и 60), НОК (20 и 16), НОД (45,30), НОД (15,16), НОК (10,12), НОД (28,42), НОК (15,20), НОК (12,18), НОД (20,60), НОК (24,16), НОД (72,108), НОК (6,4), НОК (9,8), НОК (4,10), НОД (240,640), НОК (9,4), НОД (120,180), НОД
Ответы (1)
Найдите наименьшее общее кратное число (НОК) а) НОК (6; 15) б) НОК (12; 18) в) НОК (27; 36) г) НОК (5; 10; 16) д) НОК (15; 75; 60; 300) е) НОК (2; 13678) ж) (357; 3) з) НОК (432; 9) и) НОК (702; 9; 2) к) НОК (12; 48; 96; 108)
Ответы (1)
НОК (4 И 10) = НОК (6 И 14) = НОК (8 И 12) = НОК (15 И 18) = НОК (20 И 24) = НОК (26 И 39) = НОК (120 И 300 И 100) = НОК (480 И 216 И 144) = НОК (105 И 350 И 140) = НОК (280 И 140 И 224) =
Ответы (1)