Задать вопрос
27 декабря, 05:41

Найдите: НОК (312, 2075)

+5
Ответы (1)
  1. 27 декабря, 07:41
    0
    Вычислим НОК (312; 2075).

    Разложим на простые множители числа 312 и 2075.

    312 = 2 * 2 * 2 * 3 * 13 * 1 = 2^3 * 3 * 13;

    2075 = 5 * 5 * 83 = 5^2 * 83.

    Выберем из двух чисел недостающие множители и найдем его произведение. Найденное произведение чисел, и будет НОК чисел 312 и 2075.

    НОК (312; 2075) = 5^2 * 83 * 2^3 * 3 * 13 = 647 400.
Знаешь ответ на этот вопрос?
Сомневаешься в правильности ответа?
Получи верный ответ на вопрос 🏆 «Найдите: НОК (312, 2075) ...» по предмету 📕 Математика, используя встроенную систему поиска. Наша обширная база готовых ответов поможет тебе получить необходимые сведения!
Найти готовые ответы
Похожие вопросы математике
Нод (48 и 450) Нод (270 и 450) Нод (48 и 250) Нод (270 и 250) Нок (12 и 20) Нок (12 и 30) Нок (15 и 25) Нок (72 и 9) Нок (12 и 15) Нок (18 и 15) Нок (15 и 30) Нок (20 и 25) Нок (48 и 6) Нок (175 и 25) Нок (72 и 9) Нок (72 и 8) Нок (400 и 100) Нок
Ответы (1)
Найдите наименьшее общее кратное чисел (НОК) А) НОК (6; 15) = б) НОК (12; 18) = В) НОК (27; 36) = Г) НОК (5; 10; 16) = Д) НОК (15; 75; 60; 300) = Е) НОК (2; 13678) = Ж) НОК (357; 3) = З) НОК (432; 9) = И) НОК (702; 9; 2) = К) НОК 12; 48; 96; 108) =
Ответы (1)
Нок (9 и 14), НОД (48 и 60), НОК (20 и 16), НОД (45,30), НОД (15,16), НОК (10,12), НОД (28,42), НОК (15,20), НОК (12,18), НОД (20,60), НОК (24,16), НОД (72,108), НОК (6,4), НОК (9,8), НОК (4,10), НОД (240,640), НОК (9,4), НОД (120,180), НОД
Ответы (1)
Найдите наименьшее общее кратное число (НОК) а) НОК (6; 15) б) НОК (12; 18) в) НОК (27; 36) г) НОК (5; 10; 16) д) НОК (15; 75; 60; 300) е) НОК (2; 13678) ж) (357; 3) з) НОК (432; 9) и) НОК (702; 9; 2) к) НОК (12; 48; 96; 108)
Ответы (1)
НОК (4 И 10) = НОК (6 И 14) = НОК (8 И 12) = НОК (15 И 18) = НОК (20 И 24) = НОК (26 И 39) = НОК (120 И 300 И 100) = НОК (480 И 216 И 144) = НОК (105 И 350 И 140) = НОК (280 И 140 И 224) =
Ответы (1)