Задать вопрос

вычислите, применяя переместительное и сочеталельное свойства сложения : (2/35+3/28) + 1/28 = (7/30+8/45) + (2/45 + 1/30) = (5/24 11/60) + (13/60 + 1 24) =

+4
Ответы (1)
  1. 27 мая, 13:01
    0
    Для выражения ((2/35 + 3/28) + 1/28)) применим сочетательное свойство сложения или в виде формулы: (a + b) + с = (a + c) + b = (b + c) + a. Получим: (2/35 + 3/28) + 1/28 = 2/35 + (3/28 + 1/28) = 2/35 + ((3 + 1) / 28) = 2/35 + 4/28 = 2/35 + 1/7 (общий знаменатель - число 35, поэтому сомножитель первой дроби - 35 / 35 = 1, сомножитель второй дроби 35 / 7 = 5) = (2 * 1 + 1 * 5) / 35 = (2 + 5) / 35 = 7/35 = 1/5.

    Для выражения ((7/30 + 8/45) + (2/45 + 1/30)) тоже применим сочетательное свойство сложения, при этом: (7/30 + 8/45) + (2/45 + 1/30) = (7/30 + 1/30) + (8/45 + 2/45) = ((7 + 1) / 30) + ((8 + 2) / 45) = 8/30 + 10/45 (сокращаем дробь 8/30 на число 2 и дробь 10/45 на число 5) = 4/15 + 2/9 (общий знаменатель - число 45, сомножитель первой дроби - 3, сомножитель второй дроби - 5) = (4 * 3 + 2 * 5) / 45 = (12 + 10) / 45 = 22/45.

    (5/24 + 11/60) + (13/60 + 1/24) = (5/24 + 1/24) + (11/60 + 13/60) = ((5 + 1) / 24) + ((11 + 13) / 60) = 6/24 + 24/60 = 1/4 + 2/5 (общий знаменатель - число 20, сомножитель первой дроби - 5, сомножитель второй дроби - 4) = (1 * 5 + 2 * 4) / 20 = (5 + 8) / 20 = 13/20.

    Ответ: (2/35 + 3/28) + 1/28 = 1/5; (7/30 + 8/45) + (2/45 + 1/30) = 22/45; (5/24 + 11/60) + (13/60 + 1/24) = 13/20.
Знаешь ответ на этот вопрос?
Сомневаешься в правильности ответа?
Получи верный ответ на вопрос 🏆 «вычислите, применяя переместительное и сочеталельное свойства сложения : (2/35+3/28) + 1/28 = (7/30+8/45) + (2/45 + 1/30) = (5/24 11/60) + ...» по предмету 📕 Математика, используя встроенную систему поиска. Наша обширная база готовых ответов поможет тебе получить необходимые сведения!
Найти готовые ответы