Задать вопрос

Докажите, что ABCD-квадрат, если A (11; 3; 5), B (5; 3; - 7), С (-5; - 5; - 11), D (1; - 5; 1)

+5
Ответы (1)
  1. 24 января, 12:15
    +1
    Найдем величины сторон четырехугольника ABCD:

    |AB| = ((-2 + 4) ^2 + (3 + 3) ^2 + (-4 - 5) ^2) ^ (1/2) = (4 + 36 + 81) ^ (1/2) = 11;

    |BC| = ((4 + 2) ^2 + (10 - 3) ^2 + (2 + 4) ^2) ^ (1/2) = (36 + 36 + 49) ^ (1/2) = 11;

    |CD| = ((2 - 4) ^2 + (4 - 10) ^2 + (11 - 2) ^2) ^ (1/2) = (4 + 36 + 81) ^ (1/2) = 11;

    |AD| = ((2 + 4) ^2 + (4 + 3) ^2 + (11 - 5) ^2) ^ (1/2) = (36 + 49 + 36) ^ (1/2) = 11;

    Четырехугольник с равными сторонами является ромбом. Найдем диагонали ромба:

    |AC| = ((4 + 4) ^2 + (10 + 3) ^2 + (2 - 5) ^2) ^ (1/2) = (64 + 169 + 9) ^ (1/2) = 242^ (1/2);

    |BD| = ((2 + 2) ^2 + (4 - 3) ^2 + (11 + 4) ^2) ^ (1/2) = (16 + 1 + 225) ^ (1/2) = 242^ (1/2).

    Диагонали равны, значит, ромб является квадратом.
Знаешь ответ на этот вопрос?
Сомневаешься в правильности ответа?
Получи верный ответ на вопрос 🏆 «Докажите, что ABCD-квадрат, если A (11; 3; 5), B (5; 3; - 7), С (-5; - 5; - 11), D (1; - 5; 1) ...» по предмету 📕 Геометрия, используя встроенную систему поиска. Наша обширная база готовых ответов поможет тебе получить необходимые сведения!
Найти готовые ответы