Задать вопрос
10 августа, 01:31

Одновременно от двух пристаней навстречу друг другу отошли две моторные лодки с одинаковыми скоростями. Через 3 ч они встретились. Лодка, которая плыла по течению, прошла на 6 км больше, чем другая лодка. Вычисли скорость течения реки.

+5
Ответы (1)
  1. 10 августа, 01:47
    0
    Учитывая, что скорости при движении навстречу складываются, то, независимо от наличия течения, лодки бы встретились через 3 часа, так как в одном случае скорость течения к лодке бы добавлялась, а во втором случае вычиталась. Однако смещение лодок относительно центра дистанции указывает на скорость течения. То есть 6 метров - это сложенное дважды усилие течения, другими словами 3 метра до центра не дошла одна лодка и 3 метра за пределы центра сделала вторая лодка. Значит скорость течения нужно искать следующим образом:

    v = s / t = (6 : 2) / 3 = 3 / 3 = 1 км/ч.

    Решать можно и с помощью уравнения. Примем скорость течения реки за Х км/ч, а собственную скорость лодок за У км/ч. Тогда скорость сближения лодок можно определить так:

    У + Х + У - Х = 2 * У км/ч.

    Расстояние которое прошла первая лодка, двигаясь против течения:

    s = v * t = (У - Х) * 3 км;

    Расстояние которое прошла первая лодка, двигаясь вниз по течению:

    s = v * t = (У + Х) * 3 км;

    Их разница составила 6 км:

    (У + Х) * 3 - (У - Х) * 3 = 6;

    3 * У + Х * 3 - У * 3 + Х * 3 = 6;

    6 * Х = 6;

    Х = 6/6 = 1.

    Ответ: скорость течения реки 1 км/ч.
Знаешь ответ на этот вопрос?
Сомневаешься в правильности ответа?
Получи верный ответ на вопрос 🏆 «Одновременно от двух пристаней навстречу друг другу отошли две моторные лодки с одинаковыми скоростями. Через 3 ч они встретились. Лодка, ...» по предмету 📕 Математика, используя встроенную систему поиска. Наша обширная база готовых ответов поможет тебе получить необходимые сведения!
Найти готовые ответы
Похожие вопросы математике
Одновременно от двух пристаней навстречу друг другу отошли две моторные лодки с одинаковыми скоростями. Через 1 ч. они встретились. Лодка, которая плыла по течению, прошла на 2,6 км больше, чем другая лодка. Вычисли скорость течения реки.
Ответы (1)
Из двух пунктов реки одновременно навстречу друг другу вышли две моторные лодки. Через 1,2 ч они встретились. Собственная скорость лодки, которая шла по течению реки, равна 18 км/ч, а лодки, которая шла против течения реки, 16 км/ч.
Ответы (1)
Решите задачи: 1) Лодка по течению плыла 2,5 ч а против течения-3,6 ч. Расстояние которое прошла лодка по течению на 7,6 км меньше, чей против течения. Найдите собственную скорость лодки, если скорость течения реки 2 км/ч.
Ответы (1)
Из двух пунктов реки одновременно навстречу друг другу вышли две моторные лодки. Через 2 ч они встретились, при этом оказалось, что одна лодка прошла на 12 км меньше другой. Собственная скорость каждой лодки 18 км/ч. Найдите скорость течения реки.
Ответы (1)
Моторная лодка прошла против течения реки Сакмара 120 км и вернулась в пункт отправления, затратив на обратный путь на 2 часа меньше. Найдите скорость лодки в неподвижной воде если скорость течения равна 1 км/ч.
Ответы (1)