2 февраля, 20:05

Прямая y = 5 х+14 является касательной к графику функции y = x^3 - 4x^2 + 9x + 14. Найдите абсциссу точки касания

+2
Ответы (1)
  1. 2 февраля, 20:35
    0
    Найти абсциссу - это найти значение координаты х в точке касания.

    Так как точка касания общая для обоих функций, то значение координат х и у в этой точке равны, приравняем значение координаты у:

    y = x³ - 4x² + 9x + 14.

    y = 5 х + 14.

    x³ - 4x² + 9x + 14 = 5 х + 14.

    x³ - 4x² + 9x + 14 - 5 х - 14 = 0.

    x³ - 4x² + 4x = 0.

    Вынесем х за скобку:

    х (х² - 4 х + 4) = 0.

    Свернем скобку по формуле квадрата разности:

    х (х - 2) ² = 0.

    Произведение тогда равно нулю, когда один из множителей равен нулю:

    х = 0.

    Или х - 2 = 0; х = 2.

    Получилось две точки касания.

    Ответ: абсциссы в точках касания равны 0 и 2.
Знаешь ответ на этот вопрос?
Новые вопросы по математике