Задать вопрос
14 марта, 01:11

Найдите наибольшее значение функции y=7-2√x2+4 и определите, при каких значениях x оно достигается.

+5
Ответы (1)
  1. 14 марта, 03:02
    0
    Дана функция:

    y = 7 - 2 * (x^2 + 4) ^ (1/2).

    Для нахождения наибольшего значения функции найдем ее производную:

    y' = - 1 * (x^2 + 4) ^ (-1/2).

    Критических точек нет.

    Рассматриваем саму функцию. Она представляет собой разность положительного числа и корня. Очевидно, что функция будет больше, если значение корня будет минимальным, а минимально оно достигается при нулевом значении аргумента:

    ymax = y (0) = 7 - 2 * 4^ (1/2) = 7 - 4 = 3.
Знаешь ответ на этот вопрос?
Сомневаешься в правильности ответа?
Получи верный ответ на вопрос 🏆 «Найдите наибольшее значение функции y=7-2√x2+4 и определите, при каких значениях x оно достигается. ...» по предмету 📕 Математика, используя встроенную систему поиска. Наша обширная база готовых ответов поможет тебе получить необходимые сведения!
Найти готовые ответы
Похожие вопросы математике