Докажите, что число 5 является корнем уравнения x^-7 х+10=0

+2
Ответы (1)
  1. 16 сентября, 16:05
    0
    Найдем корни данного квадратного уравнения:

    x2 - 7 х + 10 = 0.

    Найдем дискриминант уравнения:

    D = b2 - 4ac = 72 - 4 * 1 * 10 = 49 - 40 = 9;

    √ D = √ 9 = 3;

    х1 = ( - b - √ D) / 2 а = (7 - 3) / (2 * 1) = 4 / 2 = 2;

    х2 = ( - b + √ D) / 2 а = (7 + 3) / (2 * 1) = 10 / 2 = 5.

    Таким образом, 5 является корнем данного уравнения, что и требовалось доказать.
Знаешь ответ на этот вопрос?
Новые вопросы по математике