Задать вопрос

Решите уравнение производной функции : f' (x) = 0, если f (x) = x^3+4x^3+4x-15

+3
Ответы (1)
  1. 30 июня, 01:54
    0
    Найдём производную нашей данной функции: f (x) = x^3 + 4x^3 + 4x - 15.

    Воспользовавшись основными формулами и правилами дифференцирования:

    (x^n) ' = n * x^ (n-1).

    (с) ' = 0, где с - const.

    (с * u) ' = с * u', где с - const.

    (u ± v) ' = u' ± v'.

    y = f (g (x)), y' = f'u (u) * g'x (x), где u = g (x).

    Таким образом, производная нашей данной функции будет следующая:

    f (x) ' = (x^3 + 4x^3 + 4x - 15) ' = (x^3) ' + (4x^3) + (4x) ' - (15) ' = 3 * x^2 + 4 * 3 * x^2 + 4 * x^0 - 0 = 3x^2 + 12x^2 + 4 * 1 = 15x^2 + 4.

    Ответ: Производная нашей данной функции будет равна f (x) ' = 15x^2 + 4.
Знаешь ответ на этот вопрос?
Сомневаешься в правильности ответа?
Получи верный ответ на вопрос 🏆 «Решите уравнение производной функции : f' (x) = 0, если f (x) = x^3+4x^3+4x-15 ...» по предмету 📕 Математика, используя встроенную систему поиска. Наша обширная база готовых ответов поможет тебе получить необходимые сведения!
Найти готовые ответы
Похожие вопросы математике
Найдите значение производной функции в точке у = х2 - 5 х + 2 в точке х0=-2. Найдите значение производной функции в точке: у = 3cos⁡х - 〖 sin〗⁡х, х0 =. Найдите точки экстремума и определите их характер: у = 2 х3 - 10 х2 + 6 х. Часть С.
Ответы (1)
какая связь между производной и возрастанием функции? какая связь между производной и убыванием функции?
Ответы (1)
Определение производной. Геометрический и механический смысл производной. Найти угол наклона касательной к графику функции f (x) = 1/2 x^2 в точке с абсциссой x_0=1.
Ответы (1)
Что такое экстремум функции? Выберите один ответ: Экстремумами функции называются минимальные и максимальные значения функции Экстремумами функции называются точки минимума и точки максимума функции Экстремумами функции называются точки, в которых
Ответы (1)
1. График первообразной функции f (x) = пересекает график производной этой функции в точке, лежащей на оси ординат. Найдите эту первообразную. 2. На отрезке [1; 3] наибольшее значение первообразной для функции f (x) = 4x+1 ровно 22.
Ответы (1)