Задать вопрос

Найдите НОК для чисел (75, 22)

+5
Ответы (1)
  1. 21 апреля, 19:44
    0
    Чтобы найти наименьшее общее кратное или наибольший общий делитель нескольких чисел, нужно разложить их на простые множители, то есть на множители, которые являются простыми числами.

    75 = 3 * 5 * 5;

    22 = 2 * 11.

    Наименьшее общее кратное двух чисел равно произведению одного из этих чисел и тех множителей в разложении второго, которых нет в разложении первого. В нашем случае общих множителей в разложении данных чисел нет, поэтому их наименьшее общее кратное равно их произведению.

    НОК (75, 22) = 75 * 22 = 1650.
Знаешь ответ на этот вопрос?
Сомневаешься в правильности ответа?
Получи верный ответ на вопрос 🏆 «Найдите НОК для чисел (75, 22) ...» по предмету 📕 Математика, используя встроенную систему поиска. Наша обширная база готовых ответов поможет тебе получить необходимые сведения!
Найти готовые ответы
Похожие вопросы математике
Нод (48 и 450) Нод (270 и 450) Нод (48 и 250) Нод (270 и 250) Нок (12 и 20) Нок (12 и 30) Нок (15 и 25) Нок (72 и 9) Нок (12 и 15) Нок (18 и 15) Нок (15 и 30) Нок (20 и 25) Нок (48 и 6) Нок (175 и 25) Нок (72 и 9) Нок (72 и 8) Нок (400 и 100) Нок
Ответы (1)
Найдите наименьшее общее кратное чисел (НОК) А) НОК (6; 15) = б) НОК (12; 18) = В) НОК (27; 36) = Г) НОК (5; 10; 16) = Д) НОК (15; 75; 60; 300) = Е) НОК (2; 13678) = Ж) НОК (357; 3) = З) НОК (432; 9) = И) НОК (702; 9; 2) = К) НОК 12; 48; 96; 108) =
Ответы (1)
Нок (9 и 14), НОД (48 и 60), НОК (20 и 16), НОД (45,30), НОД (15,16), НОК (10,12), НОД (28,42), НОК (15,20), НОК (12,18), НОД (20,60), НОК (24,16), НОД (72,108), НОК (6,4), НОК (9,8), НОК (4,10), НОД (240,640), НОК (9,4), НОД (120,180), НОД
Ответы (1)
Найдите наименьшее общее кратное число (НОК) а) НОК (6; 15) б) НОК (12; 18) в) НОК (27; 36) г) НОК (5; 10; 16) д) НОК (15; 75; 60; 300) е) НОК (2; 13678) ж) (357; 3) з) НОК (432; 9) и) НОК (702; 9; 2) к) НОК (12; 48; 96; 108)
Ответы (1)
НОК (4 И 10) = НОК (6 И 14) = НОК (8 И 12) = НОК (15 И 18) = НОК (20 И 24) = НОК (26 И 39) = НОК (120 И 300 И 100) = НОК (480 И 216 И 144) = НОК (105 И 350 И 140) = НОК (280 И 140 И 224) =
Ответы (1)