Задать вопрос

В треугольнике угол С равен 90°, СН - высота, ВС=8, ВН=4. Найдите sinA

+5
Ответы (1)
  1. 2 июня, 02:18
    0
    Sin (30) = 0.5

    Рассмотрим треугольник BCH. BH=4 BC=8 угол H=90. CH=a BH=b BC=c a=c*Sin (C) c=a/sin (C) b=c*cos (C) нам подходит последнее т. к. нам известно b и c. Получаем 4=8*Cos (C). Cos (C) = 4/8=1/2=30 градусов, тогда угол B будет 60. Рассмотрим треугольник ABC - угол С=90, угол В=60, соответственно угол А=30 градусов. Sin (30) = 1/2 или 0,5.
Знаешь ответ на этот вопрос?
Сомневаешься в правильности ответа?
Получи верный ответ на вопрос 🏆 «В треугольнике угол С равен 90°, СН - высота, ВС=8, ВН=4. Найдите sinA ...» по предмету 📕 Математика, используя встроенную систему поиска. Наша обширная база готовых ответов поможет тебе получить необходимые сведения!
Найти готовые ответы
Похожие вопросы математике
1) В треугольнике ABC угол C прямой, cosA=3/5, Найдите cos B. 2) В треугольнике ABC угол C, cosA=5/√89. Найдите tg A. 3) В треугольнике ABC угол C, sinA=√15/4. Найдите cosA. 4) В треугольнике ABC угол C, cosA=2√6/5. найдите sinA.
Ответы (1)
Доказать тождества: 1) (1-cos2a) (1+cos2a) = sin^2 2a 2) sin a-1/cos^2=-1/1+sina 3) cos^4a-sin^4a=cos^2a-sin^2 4) sina/1+cosa+1+cosa/sina=2/sina 5) sina/1-cosa=1+cosa/sina 6) 1/1+tg^a+1/1+ctg^a=1 7) tg^2a-sin^2a=th^2a sin^2a
Ответы (1)
1) sin2a / (1+cos2a) 2) (sina+2sin (pi/3-a)) / (2sin (pi/6-a) - cosa) 3) (sina+cosa) ^2 + (sina-cosa) ^2 4) (1 - (sina+cosa) ^2) / (sina*cosa-ctga)
Ответы (1)
12. Верными являются утверждения: А) Если угол равен 15°, то вертикальный ему угол равен 15°. Б) Если угол равен 15°, то вертикальный ему угол равен 165°. С) Если угол равен 15°, то смежный с ним угол равен 15°.
Ответы (1)
9) Площадь равнобедренного треугольника равна 25 √ 3. Угол, лежащий напротив основания, равен 120. Найдите длину боковой стороны треугольника. 11) Периметр равнобедренного треугольника равен 16, а основание - 6. Найдите площадь треугольника.
Ответы (1)