Задать вопрос
24 сентября, 09:50

1. Исследуйте функцию у=|sinx| - cosx на переодичность; укажите основной период, если он существует. 2. Решите графиччески уравнение ctg x = - корень из 3.

+3
Ответы (1)
  1. 24 сентября, 13:17
    0
    Будем использовать основные правила и формулы дифференцирования:

    y = f (g (x)), y' = f'u (u) * g'x (x), где u = g (x).

    (x^n) ' = n * x^ (n-1).

    (c) ' = 0, где c - const.

    (c * u) ' = с * u', где с - const.

    (соs (x)) ' = - sin (x).

    (u ± v) ' = u' ± v'.

    (uv) ' = u'v + uv'.

    Таким образом, наша производная будет выглядеть так:

    f (x) ' = ((соs (x)) ^4) ' = (соs (x)) ' * ((соs (x)) ^4) ' = (-sin (x)) * 4 * (соs (x)) ^3 = - 4 * (sin (x)) * (соs (x)) ^3.

    Ответ: Наша производная будет выглядеть так f (x) ' = - 4 * (sin (x)) * (соs (x)) ^3.
Знаешь ответ на этот вопрос?
Сомневаешься в правильности ответа?
Получи верный ответ на вопрос 🏆 «1. Исследуйте функцию у=|sinx| - cosx на переодичность; укажите основной период, если он существует. 2. Решите графиччески уравнение ctg x ...» по предмету 📕 Математика, используя встроенную систему поиска. Наша обширная база готовых ответов поможет тебе получить необходимые сведения!
Найти готовые ответы