Задача 4. Плавание льдины. На поверхности озера плавает льдина, имеющая форму прямоугольного параллелепипеда с квадратным основанием. Льдина выставляется из воды на h=5 см. В центр льдины ставят груз массой m=30 кг. При какой площади основания льдина с грузом не погрузится полностью в воду? Какова высота льдины? Плотность воды ρв=1000 кг/м3, плотность льда ρл=900 кг/м3.

0
Ответы (1)
  1. 17 февраля, 12:43
    0
    h = 5 см = 0,05 м.

    m = 30 кг.

    g = 10 Н/кг.

    ρв = 1000 кг/м³.

    ρл = 900 кг/м³.

    S - ?

    h1 - ?

    При погружении груза на льдину сила тяжести груза m * g должна быть равной силы Архимеда Fарх, которая будет действовать на часть льдины, которая была над поверхностью воды: m * g = Fарх.

    Fарх = ρв * g * V, где ρв - плотность воды, V - объем льдина, которая была над водой.

    V = S * h.

    m * g = ρв * g * S * h.

    S = m / ρв * h.

    S = 30 кг / 1000 кг/м3 *0,05 м = 0,6 м².

    Запишем условия равновесия груза на льдине: (m + mл) * g = Fарх1, Fарх1 - сила Архимеда, которая действует на всю льдину.

    Fарх1 = ρв * g * V1, где V1 - объем всей льдины.

    V1 = S * h1.

    mл = V1 * ρл = S * h1 * ρл.

    (m + S * h1 * ρл) * g = ρв * g * S * h1.

    m + S * h1 * ρл = ρв * S * h1.

    h1 = m / S * (ρв - ρл).

    h1 = 30 кг / 0,6 м2 * (1000 кг/м3 - 900 кг/м³) = 0,5 м.

    Ответ: при площади больше S = 0,6 м² льдина не погрузится в воду полностью, высота льдина составляет h1 = 0,5 м.
Знаешь ответ на этот вопрос?