Задать вопрос
1 марта, 14:48

Разность диагоналей ромба равна 14 см. Площадь ромба равна 120 см². Найдите перметр ромба

+5
Ответы (1)
  1. 1 марта, 17:38
    0
    Пусть меньшая диагональ ромба равна х, тогда большая равна х+14. Площадь ромба равна половине произведения диагоналей, составим уравнение:

    0,5*х * (х+14) = 120;

    х * (х+14) = 240;

    x^2+14x-240=0.

    D=b^2-4ac=14^2-4 * (-240) = 196+960=1156.

    x1 = (-b-√D) / 2a = (-14-34) / 2=-48/2=-24. Первый корень имеет отрицательное значение, значит не удовлетворяет решению задачи.

    х2 = (-b+√D) / 2a = (-14+34) / 2=20/2=10.

    Следовательно, одна из диагоналей ромба равна 10 см, вторая 10+14=24 см.

    Рассмотрим прямоугольный треугольник, в котором гипотенуза - сторона ромба, катеты - половины его диагоналей. Сумма квадратов катетов равна квадрату гипотенузы, можем найти квадрат стороны ромба:

    (10/2) ^2 + (24/2) ^2=25+144=169. Сторона ромба равна √169=13 см. Следовательно, периметр ромба равен 13*4=52 см.
Знаешь ответ на этот вопрос?
Сомневаешься в правильности ответа?
Получи верный ответ на вопрос 🏆 «Разность диагоналей ромба равна 14 см. Площадь ромба равна 120 см². Найдите перметр ромба ...» по предмету 📕 Геометрия, используя встроенную систему поиска. Наша обширная база готовых ответов поможет тебе получить необходимые сведения!
Найти готовые ответы
Похожие вопросы геометрии