Задать вопрос
22 ноября, 01:11

Если треугольники равны то они подобны?

+3
Ответы (1)
  1. 22 ноября, 02:13
    0
    Если треугольники равны, то ДА их можно считать и подобными. Потому что существует три признака подобия треугольников (наш вопрос касается первого признака):

    1) Если три стороны одного треугольника пропорциональны трем сторонам другого треугольника, то такие треугольники подобны (в нашем случае стороны равны и пропорциональны 1:1, соответственно можно считать равные треугольники подобными).

    2) Если два угла одного треугольника соответственно равны двум углам другого треугольника, то такие треугольники подобны.

    3) Если две стороны одного треугольника пропорциональны двум сторонам другого треугольника, а углы между этими сторонами равны, то такие треугольники подобны.
Знаешь ответ на этот вопрос?
Сомневаешься в правильности ответа?
Получи верный ответ на вопрос 🏆 «Если треугольники равны то они подобны? ...» по предмету 📕 Геометрия, используя встроенную систему поиска. Наша обширная база готовых ответов поможет тебе получить необходимые сведения!
Найти готовые ответы
Похожие вопросы геометрии
Укажите номера верных утверждений: 1) Если два угла одного треугольника соответственно равны двум углам другого треугольника, то такие треугольники равны. 2) Любы два равнобедренных треугольника подобны.
Ответы (1)
Если три стороны одного треугольника пропорциональны трем сторонам другого треугольника, значит: 1) Треугольники равны по третьему признаку равенства треугольников 2) треугольники подобные по третьему признаку подобия треугольников 3) такие
Ответы (1)
По первому признаку подобия треугольников (если два угла одного треугольника соответственно равны двум углам другого, то такие треугольники подобны) будут подобны любые два ... треугольника 1. равнобедренных 2. прямоугольных 3. тупоугольных 4.
Ответы (1)
Выберите номера неверных высказываний: 1) треугольники подобны, если углы одного равны углам другого треугольника; 2) если соответственные стороны подобных треугольников относятся как 3:5, то площади этих треугольников относятся как 3:5;
Ответы (1)
Укажите номера верных утверждений. 1. Площадь круга равна квадрату его радиуса. 2. Если сторона и два угла одного треугольника соответственно равны стороне и двум углам другого треугольника, то такие треугольники равны. 3.
Ответы (1)