Задать вопрос

Решите уравнение: 4 х^3+13 х^2-42 х=0 В ответе укажите сумму всех его корней.

+3
Ответы (1)
  1. 28 июня, 21:42
    0
    Вынесем общий множитель х:

    4x³ + 13 х² - 42 х = 0;

    х (4x² + 13 х - 42) = 0;

    Произведение равно нулю, если один из множителей равен нулю:

    Решим два уравнения:

    1) х1 = 0;

    2) 4x² + 13 х - 42 = 0;

    Найдем корни, решив квадратное уравнение:

    Вычислим дискриминант:

    D = b² - 4ac = (13) ² - 4 * 13 * ( - 42) = 169 + 672 = 841;

    D = 0, значит, квадратное уравнение имеет один корень:

    х2 = ( - b - √D) / 2a = ( - 13 - √841) / 2 * 4 = ( - 13 - 29) / 8 = 42 / 8 = 5,25;

    х3 = ( - b - √D) / 2a = ( - 13 + √841) / 2 * 4 = ( - 13 + 29) / 8 = 16 / 8 = 2;

    Сумма корней:

    х1 + х2 + х3 = 0 + 2 + 5,25 = 7,25

    Ответ: сумма корней 7,25.
Знаешь ответ на этот вопрос?
Сомневаешься в правильности ответа?
Получи верный ответ на вопрос 🏆 «Решите уравнение: 4 х^3+13 х^2-42 х=0 В ответе укажите сумму всех его корней. ...» по предмету 📕 Математика, используя встроенную систему поиска. Наша обширная база готовых ответов поможет тебе получить необходимые сведения!
Найти готовые ответы
Похожие вопросы математике