Задать вопрос

Сумма первых трех членов убывающей геометрической прогрессии равна 63, если первый член уменьшить на 8, второй увеличить на 8, а 3 увеличить на 3 то получится арифмитическая прогрессия. Найдите третий член этой последовательности

+3
Ответы (1)
  1. 23 декабря, 06:30
    0
    Пусть а, b и с - три числа о которых идёт речь в задании. Поскольку эти числа являются тремя членами убывающей геометрической прогрессии, то, во-первых, а > b > с, во-вторых, b : a = c : b. Кроме того, сумма этих чисел равна 63, то есть, а + b + с = 63. По условиям задания, три числа а - 8, b + 8 и с + 3 образуют арифметическую прогрессию. Тогда, согласно характеристического свойства арифметической прогрессии, справедливо равенство а - 8 + с + 3 = 2 * (b + 8) или а + с = 2 * b + 21. Учитывая последние равенства предыдущих двух пунктов, получим b + 2 * b + 21 = 63 или 3 * b = 63 - 21, откуда b = 42 : 3 = 14. Тогда, пропорция из п. 1 примет вид 14 : а = с: 14 и основное свойство пропорции позволит утвердить, что а * с = 14 * 14 = 196. Используя последнее равенство предыдущего пункта, получим: а + с = 2 * 14 + 21 = 49. Итак, имеем два равенства: а + с = 49 и а * с = 196. Согласно теореме Виета, числа а и с можно рассматривать как два корня квадратного уравнения х² - 49 * х + 196 = 0. Решим это уравнение. Найдем дискриминант квадратного уравнения: D = (-49) ² - 4 * 1 * 196 = 2401 - 784 = 1617. Так как дискриминант больше нуля, то квадратное уравнение имеет два действительных корня: x₁ = (49 - √ (1617)) / (2 * 1) = 24,5 - 0,5√ (1617) и x₂ = (49 + √ (1617)) / (2 * 1) = 24,5 + 0,5√ (1617). Учитывая двойное неравенство из п. 1, окончательно утверждаем, что искомый третий член данной последовательности равно 24,5 - 0,5√ (1617).

    Ответ: 24,5 - 0,5√ (1617).
Знаешь ответ на этот вопрос?
Сомневаешься в правильности ответа?
Получи верный ответ на вопрос 🏆 «Сумма первых трех членов убывающей геометрической прогрессии равна 63, если первый член уменьшить на 8, второй увеличить на 8, а 3 ...» по предмету 📕 Математика, используя встроенную систему поиска. Наша обширная база готовых ответов поможет тебе получить необходимые сведения!
Найти готовые ответы
Похожие вопросы математике
1. найдите 25-ый член арифметической прогрессии - 3 - 6 2. найдите 10 - й член арифметической прогрессии 3 7 3. сумма первых шести членов арифметической прогрессии равна 9 разность между четвертым и вторым членами 0.4 найдите первый член прогрессии.
Ответы (1)
1. Второй член арифметической прогресии составлет 120% от первого. Найдите, сколько процентов от первого члена этой прогрессии составляет ее четвертый член. 2. Второй член геометрической прогрессии равен 4, а пятый член равен - 32.
Ответы (1)
1. Определите первый член геометрической прогрессии, если её знаменатель равен 4, а восьмой член равен 256. 2. Первый член геометрической прогрессии равен 2058, а четвёртый член равен 6. Найдите знаменатель этой прогрессии. 3.
Ответы (1)
1) Сумма первых пяти членов геометрической прогрессии равна 62. Известно что пятый, восьмой, одинадцатый члены этой прогрессии различны и являются соответственно первым, вторым, десятым членами арифметической прогрессии.
Ответы (1)
1) первый член геометрической прогрессии равен 7 и сумма двух членов равна 91. найти пятый член этой прогрессии. 2) второй член геометрической последовательности равен - 6 и пятый - 48. Найти сумму пяти первых членов этой прогресии.
Ответы (1)