Задать вопрос
20 февраля, 07:35

1. Второй член арифметической прогресии составлет 120% от первого. Найдите, сколько процентов от первого члена этой прогрессии составляет ее четвертый член. 2. Второй член геометрической прогрессии равен 4, а пятый член равен - 32. Найдите сумму четырех первых членов этой прогрессии. 3. Найдите восьмой член арифметической прогрессии, если сумма n её первых членов вычесляется по формуле Sn = 5n² - 4n. 4. Сумма трех первых членов возрастающей арифметической прогрессии, равна 15. Если от них отнять соответстенно 2, 3 и 3, то полученные числа составят геометрическую прогрессию. Найти сумму десяти первых членов данной арифметической прогрессии. 5. Представьте число 2730 в виде суммы шести чисел так, чтобы отношение каждого слагаемого к последующему было равно 0,25. В ответе укажите большее.

+5
Ответы (1)
  1. 20 февраля, 09:18
    0
    Если второй член арифметической прогрессии составляет 120% от первого, значит её разность равна 20% от первого члена.

    Обозначим первый член ряда a₁ через x, а её разность d через 0,2x.

    Запишем выражение для 4 члена ряда a₄.

    a₄ = a₁ + 3 * d.

    a₄ = x + 3 * 0,2x = x + 0,6x = 1,6x

    Составим пропорцию и найдём, сколько процентов от первого члена этой прогрессии составляет её четвёртый член.

    x - это 100%;

    1,6x - это z%.

    z = 1,6x * 100/x = 160%.

    Ответ: 4 член ряда составляет 160% от её первого члена.
Знаешь ответ на этот вопрос?
Сомневаешься в правильности ответа?
Получи верный ответ на вопрос 🏆 «1. Второй член арифметической прогресии составлет 120% от первого. Найдите, сколько процентов от первого члена этой прогрессии составляет ...» по предмету 📕 Математика, используя встроенную систему поиска. Наша обширная база готовых ответов поможет тебе получить необходимые сведения!
Найти готовые ответы
Похожие вопросы математике
Сумма трех первых членов возрастающей арифметической прогрессии равна 15. Если от первых двух членов этой прогрессии отнять по единице, а к третьему члену прибавить единицу, то полученные три числа составят геометрическую прогрессию.
Ответы (1)
Три числа составляют геометрическую прогрессию, в которой q>1. Если второй член прогрессии уменьшить на 8, то полученные три числа в том же порядке опять составят геометрическую прогрессию.
Ответы (1)
Сумма трех чисел, составляющих убывающую арифметическую прогрессию, равна 60. Если от первого числа отнять 10, от второго отнять 8, а третье число оставить без изменения, то полученные числа составят геометрическую прогрессию. Найдите эти числа.
Ответы (1)
Сумма трех чисел составляющих возрастающую геометрическую прогрессию равна 56. если из них вычесть соответственно 1,7 и 21, то вновь полученные числа составят арифметическую прогрессию. найдите сумму десяти членов геометрической прогрессии.
Ответы (1)
Сумма трех чисел составляющих возрастающую арифметическую прогрессию, равна 30. Если от первого числа отнять 5, от второго 4, а третье число оставить без изменений, то полученные числа составят геометрическую прогрессию. Найти эти числа
Ответы (1)