Задать вопрос

Найдите наименьшее общее кратное (НОК) чисел; 72, 32

+2
Ответы (1)
  1. 11 ноября, 15:59
    0
    Найдём самое меньшее целое число, которое делится на числа 72 и 32, то есть наименьшее общее кратное.

    Для того, чтобы найти наименьшее общее кратное, разложим числа на простые множители. Начнём с наименьшего простого числа 2, и потом продолжим до большего.

    32 = 2 * 16 = 2 * 2 * 8 = 2 * 2 * 2 * 4 = 2 * 2 * 2 * 2 * 2 = 2^5.

    72 = 2 * 36 = 2 * 2 * 18 = 2 * 2 * 2 * 9 = 2 * 2 * 2 * 3 * 3 = 2^3 * 3^2.

    Выберем наибольшие степени каждого из множителей и перемножим их.

    НОК (32; 72) = 2^5 * 3^2 = 288.
Знаешь ответ на этот вопрос?
Сомневаешься в правильности ответа?
Получи верный ответ на вопрос 🏆 «Найдите наименьшее общее кратное (НОК) чисел; 72, 32 ...» по предмету 📕 Математика, используя встроенную систему поиска. Наша обширная база готовых ответов поможет тебе получить необходимые сведения!
Найти готовые ответы
Похожие вопросы математике
Нод (48 и 450) Нод (270 и 450) Нод (48 и 250) Нод (270 и 250) Нок (12 и 20) Нок (12 и 30) Нок (15 и 25) Нок (72 и 9) Нок (12 и 15) Нок (18 и 15) Нок (15 и 30) Нок (20 и 25) Нок (48 и 6) Нок (175 и 25) Нок (72 и 9) Нок (72 и 8) Нок (400 и 100) Нок
Ответы (1)
Найдите наименьшее общее кратное чисел (НОК) А) НОК (6; 15) = б) НОК (12; 18) = В) НОК (27; 36) = Г) НОК (5; 10; 16) = Д) НОК (15; 75; 60; 300) = Е) НОК (2; 13678) = Ж) НОК (357; 3) = З) НОК (432; 9) = И) НОК (702; 9; 2) = К) НОК 12; 48; 96; 108) =
Ответы (1)
Найдите наименьшее общее кратное число (НОК) а) НОК (6; 15) б) НОК (12; 18) в) НОК (27; 36) г) НОК (5; 10; 16) д) НОК (15; 75; 60; 300) е) НОК (2; 13678) ж) (357; 3) з) НОК (432; 9) и) НОК (702; 9; 2) к) НОК (12; 48; 96; 108)
Ответы (1)
Найди. (НОК - наименьшее общее кратное) А) НОК (162,216). Б) НОК (350,400) В) НОК (60,220). Г) НОК (23,47) Д) НОК (495,33). Е) НОК (300,270) Ж) НОК (441, 4410). З) НОК (68,102,136)
Ответы (1)
Найдите наименьшее общее кратное чисел нок, а) нок (5,10,16) б) нок (15,75,60,300) в) нок (357,3) г) нок (2,13678) д) нок (432,9) е) нок (702,9,2) ж) нок (12,48,96,108)
Ответы (1)