Задать вопрос

Найдете наибольшее число, удовлетворяющее уравнению |х-2013|+|2013-х|=2012, где |А| - модуль числа А.

+2
Ответы (1)
  1. 10 октября, 08:15
    0
    1. Решим уравнение, разбив координатную прямую на два промежутка:

    |х - 2013| + |2013 - х| = 2012.

    a)

    {x ∈ (-∞; 2013);

    { - (х - 2013) + (2013 - х) = 2012; {x ∈ (-∞; 2013);

    {-х + 2013 + 2013 - х = 2012; {x ∈ (-∞; 2013);

    {-2 х = - 2014; {x ∈ (-∞; 2013);

    {х = 1007; x = 1007.

    b)

    {x ∈ [2013; ∞);

    { (х - 2013) - (2013 - х) = 2012; {x ∈ [2013; ∞);

    {х - 2013 - 2013 + х = 2012; {x ∈ [2013; ∞);

    {2 х = 6038; {x ∈ [2013; ∞);

    {х = 3019; x = 3019.

    2. Уравнение имеет два корня: 1007 и 3019. Наибольший корень: 3019.

    Ответ: 3019.
Знаешь ответ на этот вопрос?
Сомневаешься в правильности ответа?
Получи верный ответ на вопрос 🏆 «Найдете наибольшее число, удовлетворяющее уравнению |х-2013|+|2013-х|=2012, где |А| - модуль числа А. ...» по предмету 📕 Математика, используя встроенную систему поиска. Наша обширная база готовых ответов поможет тебе получить необходимые сведения!
Найти готовые ответы