Задать вопрос

Докажите что среди любых шести натуральных чисел обязательно найдутся два разность которого делится на 5

+2
Ответы (1)
  1. 19 декабря, 01:15
    0
    При делении на 5 натуральные числа могут давать в остатке от деления числа 0, 1, 2, 3 и 4, то есть всего 5 возможностей. Очевидно, что если есть 6 натуральных чисел, то среди этих чисел обязательно найдутся по крайней мере два числа, которые дают одинаковый остаток при делении на 5.

    Предположим, два числа х и у дают одинаковый остаток при делении на 5. Следовательно эти числа можно записать в виде:

    х = 5*k + c;

    y = 5*l + c,

    где k и l - некоторые целые числа, с - остаток от деления чисел х и у на 5.

    Разность чисел х и у равна:

    х - у = 5*k + c - 5*l + c = 5 * (k - l).

    Следовательно, разность чисел х и у делится на 5.
Знаешь ответ на этот вопрос?
Сомневаешься в правильности ответа?
Получи верный ответ на вопрос 🏆 «Докажите что среди любых шести натуральных чисел обязательно найдутся два разность которого делится на 5 ...» по предмету 📕 Математика, используя встроенную систему поиска. Наша обширная база готовых ответов поможет тебе получить необходимые сведения!
Найти готовые ответы
Похожие вопросы математике
Докажите, что если: 1) число 455 делится на 35, а 35 делится на 7, то 455 делится на 7; 2) число 744 делится на 24, а 24 делится на 6, то 744 делится на 6; 3) число 816 делится на 48, а 48 делится на 8, то 816 делится на 8.
Ответы (1)
Выберите неверное утверждение: А) произведение любых двух последовательных целых чисел делится на 2 Б) одно из любых трёх последовательных нечётных целых чисел делится на 3 В) произведение любых трёх последовательных целых чисел делится на 3 Г) одно
Ответы (1)
В ящике лежат шарики (не меньше 7) нескольких цветов. Если вытащить любые пять шариков, то среди них обязательно найдутся два шарика одного цвета. А если вытащить любые семь, то обязательно найдутся два шарика разных цветов.
Ответы (1)
Придумайте трёхзначное число, которое: 1) Делится на 3 и на 5, но не делится на 10. 2) Делится на 9 и на 10, но не делится на 25. 3) Делится на 2 и на 9, но не делится на 5. 4) Не делится ни на 2, ни на 3, на на 3, ни на 9.
Ответы (1)
Верно ли утверждение: а) если число делится на 3 и 8, то оно делится на 24 б) если число делится на 4 и 9, то оно делится на 36 в) если число делится на 4 и 6, то оно делится на 24 г) если число делится на 15 и 8, то оно делится на 120?
Ответы (1)