Задать вопрос

23. Найти площадь треугольника АВС, если его вершины А (1; -1) B (-2; 1) C (0; 5)

+4
Ответы (1)
  1. 11 декабря, 22:40
    0
    Вершины треугольника АВС заданы своими координатами, значит можно найти длины сторон треугольника, используя формулу расстояния между точками, заданными своими координатами:

    АВ = √ ( - 2 - 1) 2 + (1 - ( - 1)) 2 = √ ( - 3) 2 + 22 = √ (9 + 4) = √ 13

    ВС = √ (0 - ( - 2)) 2 + (5 - 1) 2 = √ 22 + 42 = √ (4 + 16) = √ 20

    СА = √ (1 - 0) 2 + ( - 1 - 5) 2 = √ 12 + ( - 6) 2 = √ (1 + 36) = √ 37

    S АВС = √ p * (p - AB) * (p - ВС) * (p - СА), где p = (АВ + ВС + СА) / 2 - полупериметр треугольника.

    p = (√13 + √20 + √ 37) / 2, тогда

    S АВС = √ (√13 + √20 + √ 37) / 2 * (√20 + √ 37 - √13) / 2 * (√20 + √ 13 - √37) / 2 * (√13 + √ 37 - √20) / 2 = (используя формулы сокращенного умножения, вычислим выражение стоящее под знаком корня) = √128 = √ 2 * 64 = 8*√2.
Знаешь ответ на этот вопрос?
Сомневаешься в правильности ответа?
Получи верный ответ на вопрос 🏆 «23. Найти площадь треугольника АВС, если его вершины А (1; -1) B (-2; 1) C (0; 5) ...» по предмету 📕 Математика, используя встроенную систему поиска. Наша обширная база готовых ответов поможет тебе получить необходимые сведения!
Найти готовые ответы
Похожие вопросы математике
1) Два ребра прямоугольного параллелепипеда, выходящие из одной вершины, равны 10 и 14. Площадь поверхности этого параллелепипеда равна 568. Найдите третье ребро, выходящее из той же вершины.
Ответы (1)
Даны вершины треугольника АВС. Найти: 1) длины сторон, 2) уравнения сторон, 3) угол при вершине В, 4) площадь треугольника АВС, 5) центр, радиус и уравнение окружности, описанной около треугольника АВС, 6) Записать систему неравенств, определяющих
Ответы (1)
9) Площадь равнобедренного треугольника равна 25 √ 3. Угол, лежащий напротив основания, равен 120. Найдите длину боковой стороны треугольника. 11) Периметр равнобедренного треугольника равен 16, а основание - 6. Найдите площадь треугольника.
Ответы (1)
1) Найдите диагональ квадрата, если его площадь равна 2. 2) Найдите сторону квадрата, площадь которого равна площади прямоугольника со сторонами 4 и 9. 3) Найдите площадь ромба, если его стороны равны 1, а один из углов равен 150 градусов.
Ответы (1)
Даны координаты вершины треугольника АВС. А (0; 2), В (-2; 0), С (-3; 4) Требуется найти: а) уравнение прямой, проходящей через точки А и С б) уравнение высоты, опущенной из вершины А на сторону ВС в) длину высоты, опущенной из вершины В на сторону
Ответы (1)