Задать вопрос

2cos^2x-cosx/1-sin^2x=0

+2
Ответы (1)
  1. 24 февраля, 13:44
    0
    Воспользовавшись основным тригонометрическим тождеством, получим: 1 - sin^2 (x) = cos^2 (x), тогда уравнение приобретает вид:

    (2cos^2 (x) - cos (x)) / cos^2 (x) = 0;

    2 - 1 / cos (x) = 0;

    cos (x) = 1/2;

    x = arccos (1/2) + - 2 * π * n, где n - натуральное число;

    x = π/3 + - 2 * π * n.

    Ответ: x принадлежит {π/3 + - 2 * π * n}.
Знаешь ответ на этот вопрос?
Сомневаешься в правильности ответа?
Получи верный ответ на вопрос 🏆 «2cos^2x-cosx/1-sin^2x=0 ...» по предмету 📕 Математика, используя встроенную систему поиска. Наша обширная база готовых ответов поможет тебе получить необходимые сведения!
Найти готовые ответы