Задать вопрос

Наименьшее Общее Кратное (НОК) чисел 18 и 7.

+3
Ответы (1)
  1. 12 мая, 06:58
    0
    Найдем НОК (18; 7).

    Разложим на множители заданные числа, первым запишем большее число:

    18 = 2 * 9 = 2 * 3 * 3.

    7 = 7.

    Чтобы определить НОК, необходимо недостающие множители (эти множители подчеркнуты) добавить к множителям большего числа и перемножить их: НОК (18; 7) = 2 * 3 * 3 * 7 = 18 * 7 = 126.

    Ответ: НОК (18; 7) = 126.
Знаешь ответ на этот вопрос?
Сомневаешься в правильности ответа?
Получи верный ответ на вопрос 🏆 «Наименьшее Общее Кратное (НОК) чисел 18 и 7. ...» по предмету 📕 Математика, используя встроенную систему поиска. Наша обширная база готовых ответов поможет тебе получить необходимые сведения!
Найти готовые ответы
Похожие вопросы математике
Нод (48 и 450) Нод (270 и 450) Нод (48 и 250) Нод (270 и 250) Нок (12 и 20) Нок (12 и 30) Нок (15 и 25) Нок (72 и 9) Нок (12 и 15) Нок (18 и 15) Нок (15 и 30) Нок (20 и 25) Нок (48 и 6) Нок (175 и 25) Нок (72 и 9) Нок (72 и 8) Нок (400 и 100) Нок
Ответы (1)
Найдите наименьшее общее кратное чисел (НОК) А) НОК (6; 15) = б) НОК (12; 18) = В) НОК (27; 36) = Г) НОК (5; 10; 16) = Д) НОК (15; 75; 60; 300) = Е) НОК (2; 13678) = Ж) НОК (357; 3) = З) НОК (432; 9) = И) НОК (702; 9; 2) = К) НОК 12; 48; 96; 108) =
Ответы (1)
Найдите наименьшее общее кратное число (НОК) а) НОК (6; 15) б) НОК (12; 18) в) НОК (27; 36) г) НОК (5; 10; 16) д) НОК (15; 75; 60; 300) е) НОК (2; 13678) ж) (357; 3) з) НОК (432; 9) и) НОК (702; 9; 2) к) НОК (12; 48; 96; 108)
Ответы (1)
Найди. (НОК - наименьшее общее кратное) А) НОК (162,216). Б) НОК (350,400) В) НОК (60,220). Г) НОК (23,47) Д) НОК (495,33). Е) НОК (300,270) Ж) НОК (441, 4410). З) НОК (68,102,136)
Ответы (1)
Найдите наименьшее общее кратное чисел нок, а) нок (5,10,16) б) нок (15,75,60,300) в) нок (357,3) г) нок (2,13678) д) нок (432,9) е) нок (702,9,2) ж) нок (12,48,96,108)
Ответы (1)