Задать вопрос

Периметр прямоугольника равен 34 см, а его диагональ 13 см. Найти площадь прямоугольника.

+3
Ответы (1)
  1. 21 января, 11:44
    0
    1. А, В, С, Д - вершины прямоугольника. Р - периметр. S - площадь.

    2. Р = 2 (АВ + АД) = 34 сантиметра.

    АВ + АД = 17 сантиметров.

    3. Обозначим сторону АВ символом "а", сторону АД символом "в".

    4. Составляем уравнения:

    а + в = 17;

    а² + в² = 13² = 169;

    5. Обе части первого уравнения возводим в квадрат:

    (а + в) ² = 17²;

    а² + 2 ав + в² = 289;

    6. Из полученного уравнения вычитаем второе уравнение:

    а² + 2 ав + в² - а² - в² = 120;

    2 ав = 120;

    ав = 120 : 2 = 60.

    S = ав = 60 сантиметров².

    Ответ: S = 60 сантиметров².
Знаешь ответ на этот вопрос?
Сомневаешься в правильности ответа?
Получи верный ответ на вопрос 🏆 «Периметр прямоугольника равен 34 см, а его диагональ 13 см. Найти площадь прямоугольника. ...» по предмету 📕 Геометрия, используя встроенную систему поиска. Наша обширная база готовых ответов поможет тебе получить необходимые сведения!
Найти готовые ответы
Похожие вопросы геометрии
1) Найдите диагональ прямоугольника, если его периметр равен 40 см, а периметр одного из треугольников, на которые диагональ делит прямоугольник, равен 36 см 2) Стороны треугольника ABC равны 14 см, 12 см и 8 см, а вершины его-середины сторон
Ответы (1)
найдите диагональ прямоугольника, если его периметр равен 62, а периметр одного из треугольников, на которые диагональ разделила треугольник, равен 56
Ответы (1)
Найдите диагональ прямоугольника, если его периметр равен 28, а периметр одного из треугольников, на которые диагональ разделила прямоугольник, равен 24.
Ответы (1)
Из вершины прямоугольника на диагональ опущен перпендикуляр длиной 36 см. Основание перпендикуляра делит диагональ в отношении 9:16. Найдите диагональ данного прямоугольника.
Ответы (1)
найдите строны прямоугольна если 1) диагональ равна 10 см а угол между диагоналями равен 60 градусов 2) одна из строн в 2 раза больше другой а диагональ равна 5 см 3) одна из строн равна 8 см а втроя на 4 см меньше чем диагональ в задачах наужно
Ответы (1)