Задать вопрос
27 апреля, 09:45

Острый угол треугольника равен 60 градусам. Сумма гипотенузы и малого катета=2.64 см. Какова длина гипотенузы?

+4
Ответы (1)
  1. 27 апреля, 12:39
    0
    Сначала нам необходимо определить, чему будет равняться второй острый угол представленного в условии прямоугольного треугольника, когда известно, что первый составляет 60°:

    90 - 60 = 30.

    Как мы знаем из школьной программы, катет, что находится напротив такого угла является меньшим и составляет только половину от гипотенузы.

    Тогда пусть он будет выражен через а.

    Следовательно, гипотенуза будет равна 2 а.

    Зная, что сумма их длин 2,64 см, получаем:

    2 а + а = 2,64;

    3 а = 2,64;

    а = 0,88;

    0,88 * 2 = 1,76.

    Ответ: 1,76 см.
Знаешь ответ на этот вопрос?
Сомневаешься в правильности ответа?
Получи верный ответ на вопрос 🏆 «Острый угол треугольника равен 60 градусам. Сумма гипотенузы и малого катета=2.64 см. Какова длина гипотенузы? ...» по предмету 📕 Геометрия, используя встроенную систему поиска. Наша обширная база готовых ответов поможет тебе получить необходимые сведения!
Найти готовые ответы
Похожие вопросы геометрии
Один из острых углов прямоугольного треугольника равен 60 градусам. разность гипотенузы и малого катета 4 см. Найдите длины гипотенузы и малого катета
Ответы (1)
Длина меньшего катета прямоугольного треугольника равна 6 см. Найдите длины второго катета и гипотенузы, если известно, что длина большего катета равна среднему арифметическому длин меньшего катета и гипотенузы.
Ответы (1)
В треугольнике ABC и A1B1C1 угол A=50 градусам угол C=60 градусам угол C1=60 градусам угол B1=70 градусам докажите что треугольник ABC подобен треугольнику A1B1C1
Ответы (1)
Один из острых углов треугольника равен 60 градусов. Сумма меньшего катета и гипотенузы=3.6 дм. Найти длину меньшего катета и гипотенузы.
Ответы (1)
Какой правильный способ нахождение внешнего угла треугольника: 1) угол 4 = угол 1+угол 2 2) угол 4 = угол 1 + угол 3 3) угол 4 = угол 2 + угол 3 4) угол 4 = 2 умножить на угол 3 5) угол 4 = 180 - угол 1
Ответы (1)