Задать вопрос
20 апреля, 02:01

Решить log3 числа (8-х) = 5

+2
Ответы (1)
  1. 20 апреля, 04:05
    0
    Прежде всего, отметим, что данное уравнение log₃ (8 - х) = 5 имеет смысл только в том случае, если 8 - x > 0. Решим это неравенство. Имеем: 8 > x, или х < 8. Значит, областью допустимых значений х, при которых данное уравнение имеет право на существование, является (-∞; 8). Поскольку 243 = 3⁵, то 5 = log₃243. Следовательно, вместо данного уравнения сможем написать уравнение: log₃ (8 - х) = log₃243. Последнее уравнение равносильно уравнению 8 - x = 243 или - х = 243 - 8, откуда х = - 235 < 8.

    Ответ: х = - 235.
Знаешь ответ на этот вопрос?
Сомневаешься в правильности ответа?
Получи верный ответ на вопрос 🏆 «Решить log3 числа (8-х) = 5 ...» по предмету 📕 Математика, используя встроенную систему поиска. Наша обширная база готовых ответов поможет тебе получить необходимые сведения!
Найти готовые ответы