Задать вопрос
27 июня, 21:29

На доске записали десять последовательных натуральных чисел. Затем одно из них стерли, а оставшиеся девять чисел сложили. Сумма оказалась равна 2015. Какое число стерли?

+4
Ответы (1)
  1. 27 июня, 23:18
    0
    Обозначим наименьшее из записанных изначально чисел за х.

    Тогда другие записанные на доске числа х + 1; х + 2; х + 3; х + 4;

    х + 5; х + 6; х + 7; х + 8; х + 9.

    Сумма всех изначально записанных на доске чисел будет равна:

    10 х + (0 + 9) * 10/2 = 10 х + 45.

    Одно из чисел стерли, таким образом, сумма уменьшилась на х + n, где n одно из чисел 0, 1, 2, 3, 4, 5, 6, 7, 8, 9 и составила:

    10 х + 45 - (х + n) = 9 х + 45 - n.

    Заметим, что 9 х и 45 делятся на 9, поэтому если разделить сумму

    (9 х + 45 - n) на 9, то по остатку от деления можно будет судить об n:

    2015 / 9 = 2007 ост (8).

    Поскольку остаток от деления равен 8, то n = 9 - 8 = 1 (n выбирается так, чтобы разность 2015 - n делилась на 9).

    Найдем х:

    9 х + 45 - 1 = 2015;

    х = 219.

    Таким образом, было стерто число х + 1 = 219 + 1 = 220.

    Ответ: 220.
Знаешь ответ на этот вопрос?
Сомневаешься в правильности ответа?
Получи верный ответ на вопрос 🏆 «На доске записали десять последовательных натуральных чисел. Затем одно из них стерли, а оставшиеся девять чисел сложили. Сумма оказалась ...» по предмету 📕 Математика, используя встроенную систему поиска. Наша обширная база готовых ответов поможет тебе получить необходимые сведения!
Найти готовые ответы
Похожие вопросы математике
1) На доске были написаны 10 последовательных натуральных чисел. Когда стёрли одно из них, то сумма девяти оставшихся оказалась равна 2002. Какие числа остались на доске? 2) На доске были написаны 10 последовательных натуральных чисел.
Ответы (1)
На доске были написаны 10 последовательных натуральных чисел. Когда стёрли одно из них, то сумма девяти оставшихся оказалась равна 2016. Какое число стёрли?
Ответы (1)
На доске были написаны 5 последовательных натуральных чисел. Одно из них стерли, после чего сумма оставшихся оказалась равна 2016. Какое число стерли?
Ответы (1)
На доске были записаны 10 последовательных натуральных чисел. Когда стёрли одно из них, то сумма девяти оставшихся получилась 2017. Какое число стёрли?
Ответы (1)
На доске было написано 8 последовательных натуральных чисел. Когда стёрли одно из них, то сумма оставшихся получилась 107. Какое число стёрли?
Ответы (1)