Задать вопрос

Какое максимальное количество чисел можно выбрать среди чисел от 1 до 100 так, чтобы никакие два не имели общего делителя, кроме единицы?

+4
Ответы (1)
  1. 24 сентября, 14:54
    0
    В данном задании требуется найти простые числа - натуральные числа, которые делятся только на самих себя и на 1, они как раз и не будут иметь общих делителей, кроме 1.

    2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37, 41, 43, 47, 53, 59, 61, 67, 71, 73, 79, 83, 89, 97.

    Всего таких чисел от единицы до ста 25.

    Ответ: 25.
Знаешь ответ на этот вопрос?
Сомневаешься в правильности ответа?
Получи верный ответ на вопрос 🏆 «Какое максимальное количество чисел можно выбрать среди чисел от 1 до 100 так, чтобы никакие два не имели общего делителя, кроме единицы? ...» по предмету 📕 Математика, используя встроенную систему поиска. Наша обширная база готовых ответов поможет тебе получить необходимые сведения!
Найти готовые ответы
Похожие вопросы математике
3 единицы шестого разряда, 5 единиц третьего разряда; 9 единиц шестого разряда 4 единицы четвёртого разряда, 6 единиц третьего разряда, 3 единиц первого разряда; 7 единиц шестого разряда, 2 единиц третьего разряда, 3 единицы второго разряда;
Ответы (1)
Выразите в процентах: 1/100 3/100 17/100 29/100 63/100 77/100 83/100 99/100 1 9/100 1 17/100 2 3/100 2 13/100 5 27/100 3 1/100 3 19/100 4 11/100 4 5/100 5 4/100 5 18/100
Ответы (1)
Найдите наименьшее натуральное число N такое, что у числа N ровно три простых делителя, у числа 11N - тоже три простых делителя, а у числа 6N - четыре простых делителя.
Ответы (1)
Можно ли среди первых ста натуральных чисел выбрать 50 чисел так, чтобы среди них не было двух чисел, дающих в сумме 100? Можно ли выбрать 52 числа с теми же условиями?
Ответы (1)
Квадрат со стороной 9 см разбит на единичные квадратики (квадраты со стороной 1 см). Какое наибольшее количество единичных квадратиков можно закрасить так, чтобы никакие два закрашенных квадратика не имели общей вершины?
Ответы (1)