Задать вопрос

Найдите первый член геометрической прогрессии, если q=3/4, S4=350

+4
Ответы (1)
  1. 22 января, 07:43
    0
    Дано: (bn) - геометрическая прогрессия;

    S₄ = 350; q = 3/4;

    Найти: b1 -?

    Формула суммы первых n членов геометрической прогрессии:

    Sn = (bn * q - b₁) / (q - 1), т. е. S₄ = (b₄ * q - b₁) / (q - 1).

    Т. е. (b₄ * 3/4 - b₁) / (3/4 - 1) = 350;

    (b₄ * 3/4 - b₁) / (-1/4) = 350;

    b₄ * 3/4 - b₁ = - 87,5. (1)

    Формула n-го члена геометрической прогрессии:

    bn = b₁ * q^ (n - 1),

    где b₁ - первый член прогрессии, q - её знаменатель, n - количество членов;

    Согласно этой формуле выразим четвертый член заданной прогрессии:

    b₄ = b₁ * q^ (4 - 1) = b₁ * q^3 = b₁ * (3/4) ^3 = 27b₁ / 64. (2)

    Из выражений (1) и (2) составим систему уравнений:

    b₄ * 3/4 - b₁ = - 87,5, (1)

    b₄ = 27b₁ / 64 (2)

    Решим данную систему, подставив (2) уравнение в (1):

    (27b₁ / 64) * 3/4 - b₁ = - 87,5;

    81b₁ / 256 - b₁ = - 87,5;

    (81b₁ - 256b₁) / 256 = - 87,5;

    -175b₁ = - 22400;

    b₁ = 128.

    Подставив полученное значение b 1 во (2) уравнение системы, найдём b ₄ = 27b ₁ / 64 = 27 * 128 : 64 = 54.

    Ответ: b₁ = 128.
Знаешь ответ на этот вопрос?
Сомневаешься в правильности ответа?
Получи верный ответ на вопрос 🏆 «Найдите первый член геометрической прогрессии, если q=3/4, S4=350 ...» по предмету 📕 Математика, используя встроенную систему поиска. Наша обширная база готовых ответов поможет тебе получить необходимые сведения!
Найти готовые ответы
Похожие вопросы математике
1. Определите первый член геометрической прогрессии, если её знаменатель равен 4, а восьмой член равен 256. 2. Первый член геометрической прогрессии равен 2058, а четвёртый член равен 6. Найдите знаменатель этой прогрессии. 3.
Ответы (1)
1. найдите 25-ый член арифметической прогрессии - 3 - 6 2. найдите 10 - й член арифметической прогрессии 3 7 3. сумма первых шести членов арифметической прогрессии равна 9 разность между четвертым и вторым членами 0.4 найдите первый член прогрессии.
Ответы (1)
1. Второй член арифметической прогресии составлет 120% от первого. Найдите, сколько процентов от первого члена этой прогрессии составляет ее четвертый член. 2. Второй член геометрической прогрессии равен 4, а пятый член равен - 32.
Ответы (1)
1) Сумма первых пяти членов геометрической прогрессии равна 62. Известно что пятый, восьмой, одинадцатый члены этой прогрессии различны и являются соответственно первым, вторым, десятым членами арифметической прогрессии.
Ответы (1)
1) второй член арифметической прогрессии равен 5, а пятый член равен 14. найдите разность пргрессии. 2) седьмой член арифметической прогрессии равен 20, а третий член равен 8. найдите первый член.
Ответы (1)