Задать вопрос

Из урны, содержащей шары с номерами от 1 до 10, четыре раза вслепую достают шар, фиксируют его номер, и возвращают обратно. Найти вероятность того, что а) номера извлеченных шаров будут различны; б) номера извлеченных шаров образуют строго возрастающую последовательность.

+3
Ответы (1)
  1. а) То, какой шар был извлечен в первый раз не влияет на общую вероятность того, что все 4 шара одинаковые. Вероятность того, что на втором шаге это будет тот же шар 1/10, на третьем шаге 1/10, на четвертом шаге 1/10. Для того чтобы найти вероятность того, что все 4 раза будет вынут один и тот же шар перемножим вероятности что это тот же шар на втором, третьем и четвертом шагах:

    1/10 * 1/10 * 1/10 = 1/1000 = 0,001.

    б) Для того, чтобы номера шаров образовали возрастающую последовательность, на первом шаге должен быть извлечен один из шаров 1, 2, 3, 4, 5 или 6. Вероятность того, что выпадет один из этих шаров 6/10. Вероятность того, что на втором шаге выпадет следующий по номеру шар 1/10, вероятность того, что на третьем шаге выпадет следующий по номеру шар 1/10, вероятность того, что на четвертом шаге выпадет следующий по номеру шар 1/10.

    Перемножим вероятности, чтобы найти вероятность что номера извлеченных шаров образуют строго возрастающую последовательность:

    6/10 * 1*10 * 1/10 * 1/10 = 0,0006.
Знаешь ответ на этот вопрос?
Сомневаешься в правильности ответа?
Получи верный ответ на вопрос 🏆 «Из урны, содержащей шары с номерами от 1 до 10, четыре раза вслепую достают шар, фиксируют его номер, и возвращают обратно. Найти ...» по предмету 📕 Математика, используя встроенную систему поиска. Наша обширная база готовых ответов поможет тебе получить необходимые сведения!
Найти готовые ответы
Похожие вопросы математике
Из урны, содержащей 8 шаров, помеченных цифрами 1,2,3,4,5,6,7,8, вынимают наугад все шары один за другим. Найдите вероятность того, что номера извлеченных шаров будут идти в порядке возрастания.
Ответы (1)
Задачка на теорию вероятностиИз урны, содержащей 8 шаров, помеченных цифрами 1, 2, 3, 4, 5, 6, 7, 8, вынимают наугад все шары один за другим. Найдите вероятность того, что номера извлеченных шаров будут в порядке возрастания.
Ответы (1)
Имеются три одинаковые с виду урны. В первой 6 белых шаров и 19 черных шаров; во второй урне 14 белых и 11 черных; в третьей только белые шары. Из наугад выбранной урны достают один шар. Какова вероятность, что этот шар белый?
Ответы (1)
Имеются 2 урны. В первой лежат 6 белых и 11 черных шаров; во второй находятся 39 белых и 8 черных. Из первой урны во вторую перекладывают один шар. Какова вероятность после этого вытянуть: А) белый шар из 1-ой урны; Б) белый шар из 2-ой урны.
Ответы (1)
Из урны содержащей 9 пронумерованных шаров наудачу извлекают все шары. Найти вероятность того, что все номера будут по порядку, последний шар будит четным и последний шар будет нечетным.
Ответы (1)