Задать вопрос

Известно что в геометрической прогрессии b3=12 и b5=48, то найдите сумму первых шести членов.

+1
Ответы (1)
  1. 4 сентября, 23:18
    0
    По свойству геометрической прогрессии b4 = √ (b3*b5) = √ (12*48) = 12*2 = 24 = > знаменатель прогрессии равен 2. b3 = 12 = > b2 = 6 = > b1 = 3. Сумма 6 членов геом. прогрессии: 3 * (2^6 - 1) / (2-1) = 3*63 = 189 Ответ: 189
Знаешь ответ на этот вопрос?
Сомневаешься в правильности ответа?
Получи верный ответ на вопрос 🏆 «Известно что в геометрической прогрессии b3=12 и b5=48, то найдите сумму первых шести членов. ...» по предмету 📕 Математика, используя встроенную систему поиска. Наша обширная база готовых ответов поможет тебе получить необходимые сведения!
Найти готовые ответы
Похожие вопросы математике
1) Сумма первых пяти членов геометрической прогрессии равна 62. Известно что пятый, восьмой, одинадцатый члены этой прогрессии различны и являются соответственно первым, вторым, десятым членами арифметической прогрессии.
Ответы (1)
1. Дана геометрическая прогрессия. Найдите b9, если b1 = - 24, q = 0,5.2. Найдите сумму первых шести членов геометрической прогрессии, первый член которой равен - 9, а знаменатель равен - 2.3. Найдите сумму пяти первых членов прогрессии 36; - 18; 9 .
Ответы (1)
1. В арифметической прогрессии a1=-7, b=3 Найдите a12 и сумму первых двенадцати членов этой прогрессии. 2 ... В геометрической прогрессии b1=9, q=1/3 Найдите b6 и сумму первых шести членов этой прогрессии.
Ответы (1)
1. найдите 25-ый член арифметической прогрессии - 3 - 6 2. найдите 10 - й член арифметической прогрессии 3 7 3. сумма первых шести членов арифметической прогрессии равна 9 разность между четвертым и вторым членами 0.4 найдите первый член прогрессии.
Ответы (1)
1. Известны два члена геометрической прогрессии: b4=2 и b6=200. Найдите ее первый член. 2. Сумма первых четырех членов геометрической прогрессии равна 45, знаменатель прогрессии равен 2. Найдите сумму первых восьми членов этой прогрессии.
Ответы (1)