Задать вопрос

1) sin x * cos2x - cos x * sin2x = 1/2 2) 2cos - sin x * cos x = 0 3) 2 (cosx) ^2 - cosx - 1 = 0

+4
Ответы (1)
  1. 2 декабря, 13:38
    0
    1) Синус разности:

    sinx * cos2x - cosx * sin2x = 1/2; sin (x - 2x) = 1/2; sin (-x) = 1/2; - sinx = 1/2; sinx = - 1/2; [x = - π/6 + 2πk, k ∈ Z;

    [x = - 5π/6 + 2πk, k ∈ Z.

    2) Общий множитель:

    2cosx - sinx * cosx = 0; cosx (2 - sinx) = 0; [cosx = 0;

    [2 - sinx = 0; [x = π/2 + πk, k ∈ Z;

    [sinx = 2 > 1 - нет решения; x = π/2 + πk, k ∈ Z.

    3) Квадратное уравнение:

    2cos^2x - cosx - 1 = 0; D = 1^2 + 4 * 2 = 9; cosx = (1 ± √9) / 4 = (1 ± 3) / 4;

    a) cosx = (1 - 3) / 4 = - 2/4 = - 1/2;

    x = ±2π/3 + 2πk, k ∈ Z.

    b) cosx = (1 + 3) / 4 = 4/4 = 1;

    x = 2πk, k ∈ Z.
Знаешь ответ на этот вопрос?
Сомневаешься в правильности ответа?
Получи верный ответ на вопрос 🏆 «1) sin x * cos2x - cos x * sin2x = 1/2 2) 2cos - sin x * cos x = 0 3) 2 (cosx) ^2 - cosx - 1 = 0 ...» по предмету 📕 Математика, используя встроенную систему поиска. Наша обширная база готовых ответов поможет тебе получить необходимые сведения!
Найти готовые ответы