Задать вопрос

lim (x→0) ⁡ (arcsin⁡x-artg x) / x^3 = ?

+3
Ответы (1)
  1. 25 ноября, 17:21
    0
    Найдем значение выражения lim (x → 0) ⁡ (arcsin ⁡x - artg x) / x ^ 3.

    Для того, чтобы найти значение выражения lim (x → 0) ⁡ (arcsin ⁡x - artg x) / x ^ 3, нужно известное значение x → 0 подставить в выражение arcsin ⁡x - artg x) / x ^ 3 и вычислить его примерное значение. То есть получаем:

    im (x → 0) ⁡ (arcsin ⁡x - artg x) / x ^ 3 → (arcsin ⁡0 - artg 0) / x ^ 3 → (0 - 0) / 0 ^ 3 → 0/0 → 0;

    В итоге получили, lim (x → 0) ⁡ (arcsin ⁡x - artg x) / x ^ 3 → 0.

    Ответ: 0.
Знаешь ответ на этот вопрос?
Сомневаешься в правильности ответа?
Получи верный ответ на вопрос 🏆 «lim (x→0) ⁡ (arcsin⁡x-artg x) / x^3 = ? ...» по предмету 📕 Математика, используя встроенную систему поиска. Наша обширная база готовых ответов поможет тебе получить необходимые сведения!
Найти готовые ответы