Задать вопрос
10 октября, 04:52

найдите площадь квадрата со стороной корень из 5 - 1

+5
Ответы (1)
  1. 10 октября, 05:14
    0
    Длина стороны квадрата равна - √ (5 - 1).

    Определим площадь данного квадрата. Для этого использовать следующую формулу:

    S = a^2.

    Все стороны квадрата равны.

    S - это площадь квадрата.

    а - длина стороны квадрата.

    S = (√ (5 - 1)) ^2 = (√4) ^2 = 2^2 = 4.

    Значит, площадь квадрата равна 4.

    Ответ: площадь квадрата равна 4.
Знаешь ответ на этот вопрос?
Сомневаешься в правильности ответа?
Получи верный ответ на вопрос 🏆 «найдите площадь квадрата со стороной корень из 5 - 1 ...» по предмету 📕 Математика, используя встроенную систему поиска. Наша обширная база готовых ответов поможет тебе получить необходимые сведения!
Найти готовые ответы
Похожие вопросы математике
Вычислите: а) корень 8*50 а) корень 8 * на корень8 б) корень 27*12 б) корень 3 * на корень 75 в) корень 18*50 в) корень 20 * на корень 45 г) корень 32*72 г) корень 98 * на корень 50 д) корень 40*55*22 д) корень 40 * на корень 10 е) корень 21*35*15
Ответы (1)
Длина прямоугольника 7 целых 3/5 см. Его периметр равен периметру квадрата со стороной 6 см. Найдите ширину прямоугольника. Длина прямоугольника 7 целых 3/5 см. Его периметр равен периметру квадрата со стороной 6 см. Найдите ширину прямоугольника.
Ответы (1)
Упростите: а) 5 корень из 2 + 2 корень из 32 - корень из 98 б) (4 корень из 3 + корень из 27) * корень из 3 в) (корень из 5 - корень из 3) ^2 г) 6 корень из 3 + корень из 27 - 3 корень из 75 д) (корень из 50 - 2 корень из 2) * корень из 2 е) (2 -
Ответы (1)
1. Упростите выражение а) 1/3 корень 18 + 3 корень 8 - корень 98 б) 2 корень 5 (корень 20 - 3 корень 5) в) (3+2 корень 7) в квадрате г) (корень 11 + 2 корень 7) в квадрате 2. Сравните значение выражений 8 корень 3/4 и 1/3 корень 405 3.
Ответы (1)
Есть квадрат. 1) периметр квадрата составляет 48 дм. найти площадь квадрата. 2) периметр квадрата составляет 16 см. Сторону квадрата уменьшили на 1 см, как изменилась площадь квадрата?3) периметр квадрата составляет 20 см.
Ответы (1)