Задать вопрос

найти производнуюсложной функции: y=sin (2x-1)

+3
Ответы (1)
  1. 17 февраля, 22:13
    0
    По условию нам дана функция: f (x) = sin (2x - 1).

    Будем использовать основные правила и формулы дифференцирования:

    y = f (g (x)), y' = f'u (u) * g'x (x), где u = g (x).

    (x^n) ' = n * x^ (n-1).

    (c) ' = 0, где c - const.

    (c * u) ' = с * u', где с - const.

    (sin (x)) ' = соs (x).

    (u ± v) ' = u' ± v'.

    (uv) ' = u'v + uv'.

    Таким образом, Наша производная будет выглядеть так будет следующая:

    f (x) ' = (sin (2x - 1)) ' = (2x - 1) ' * (sin (2x - 1)) ' = ((2x) ' - (1) ') * (sin (2x - 1)) ' = 2 соs (2x - 1).

    Ответ: Наша производная будет выглядеть так f (x) ' = 2 соs (2x - 1).
Знаешь ответ на этот вопрос?
Сомневаешься в правильности ответа?
Получи верный ответ на вопрос 🏆 «найти производнуюсложной функции: y=sin (2x-1) ...» по предмету 📕 Математика, используя встроенную систему поиска. Наша обширная база готовых ответов поможет тебе получить необходимые сведения!
Найти готовые ответы