Задать вопрос
31 июля, 08:08

найдите наименьшее и наибольшее значение функции у=-2 (х-1) ^2 на отрезке [-1,2].

+4
Ответы (1)
  1. 1. Найдем первую производную заданной функции:

    у' = (-2 * (х - 1) ^2) ' = - 4 * (х - 1).

    2. Приравняем эту производную к нулю и найдем критические точки:

    -4 * (х - 1) = 0;

    -4 х + 4 = 0;

    -4 х = - 4;

    х = - 4 : (-4);

    х = 1.

    3. Найдем значение функции в этой точке и на концах заданного отрезка [-1; 2]:

    у (1) = - 2 * (1 - 1) ^2 = - 2 * 0 = 0;

    у (-1) = - 2 * (-1 - 1) ^2 = - 2 * (-2) ^2 = - 2 * 4 = - 8;

    у (2) = - 2 * (2 - 1) ^2 = - 2 * 1 = - 2.

    Наибольшее значение функции в точке х = 1, наименьшее значение функции в точке х = - 1.

    Ответ: fmax = 0, fmin = - 8.
Знаешь ответ на этот вопрос?
Сомневаешься в правильности ответа?
Получи верный ответ на вопрос 🏆 «найдите наименьшее и наибольшее значение функции у=-2 (х-1) ^2 на отрезке [-1,2]. ...» по предмету 📕 Математика, используя встроенную систему поиска. Наша обширная база готовых ответов поможет тебе получить необходимые сведения!
Найти готовые ответы
Похожие вопросы математике
1) найти стационарные точки функции: 1) f (x) = x + 4/x и среди них указать точку максимума 2) f (x) = 9x + 1/x и среди них указать точку минимума 2) Найти наибольшее и наименьшее значение функции 1) f (x) = 2/x+1 + x/2 на отрезке [0; 2;
Ответы (1)
1) Функция f (x) нечетная, и f (3) = -4. Найдите значение функции y=2f (x) - 6 в точке х=-3.2) Найдите наименьшее значение функции на отрезке [5π/4; 17π/12].
Ответы (1)
1. Известно, что f' (x) = x^3-5x^2/2-3x/2. В каких точках необходимо вычислить значение функции f (x), чтобы найти её наибольшее и наименьшее значение на отрезке [-5/2; 1/2]? 2.
Ответы (1)
Дана функция f (x) = 3x - 3 а) найти наибольшее и наименьшее значение функции на отрезке [0; 2] б) на каком отрезке функция принимает наибольшее значение, равное 25, наименьшее значение, равное 1.
Ответы (1)
1. Найдите наибольшее значение функции f (x) = - x² + 4x + 21 2. Найдите наименьшее значение функции g (x) = x²+4x - 32 3. Найдите наибольшее значение функции y (x) = ln (e² - x²) на отрезке [1; 1]
Ответы (1)