Задать вопрос

В прямоугольнике ABCD - биссектриса угла А пересекает ВС в точке К. Найти АК, если AD = 11, периметр ABCD = 38

+1
Ответы (1)
  1. 19 июня, 16:45
    0
    1. В прямоугольнике стороны, находящиеся друг против друга равны. Используя формулу

    расчёта периметра прямоугольника, вычисляем длину стороны АВ:

    2 АВ + 2 АД = 38;

    2 АВ = 38 - 2 АД = 38 - 22 = 16 см.

    АВ = 8 см.

    2. Угол ВАК = 90 °: 2 = 45 °, так как биссектриса делит угол пополам.

    4. Угол АКВ = 180 ° - 90 ° - 45 ° = 45 °.

    5. Треугольник АКВ равнобедренный, так как углы при основании АВ равны. АВ = ВК = 8 см.

    6. АК ^ 2 = АВ ^ 2 + ВК ^ 2;

    АК = √ АВ ^ 2 + ВК ^ 2 = √ 8 ^ 2 + 8 ^ 2 = 8 √ 2 см.

    Ответ: длина АК равна 8 √ 2 см.
Знаешь ответ на этот вопрос?
Сомневаешься в правильности ответа?
Получи верный ответ на вопрос 🏆 «В прямоугольнике ABCD - биссектриса угла А пересекает ВС в точке К. Найти АК, если AD = 11, периметр ABCD = 38 ...» по предмету 📕 Геометрия, используя встроенную систему поиска. Наша обширная база готовых ответов поможет тебе получить необходимые сведения!
Найти готовые ответы
Войти
Задать вопрос