Задать вопрос

Найдите площадь параллелограмма, стороны которого равны 2 см и 2√2 см, и образуют угол 45°

+4
Ответы (1)
  1. 8 апреля, 13:45
    0
    1. Вершины параллелограмма - А, В, С, Д. S - площадь параллелограмма. ∠А = 45°. S -

    площадь параллелограмма. ВЕ - высота, проведённая к стороне АД. АД = 2√2 сантиметра.

    АВ = 2 сантиметра.

    2. ВЕ: АЕ = тангенс ∠ВАЕ тангенс 45° = 1.

    Длина высоты ВЕ = 2 х 1 = 2 сантиметра.

    3. S = АД х ВЕ = 2√2 х 2 = 4√2 сантиметра²

    Ответ: S равна 4√2 сантиметра²
Знаешь ответ на этот вопрос?
Сомневаешься в правильности ответа?
Получи верный ответ на вопрос 🏆 «Найдите площадь параллелограмма, стороны которого равны 2 см и 2√2 см, и образуют угол 45° ...» по предмету 📕 Геометрия, используя встроенную систему поиска. Наша обширная база готовых ответов поможет тебе получить необходимые сведения!
Найти готовые ответы
Похожие вопросы геометрии
Какой правильный способ нахождение внешнего угла треугольника: 1) угол 4 = угол 1+угол 2 2) угол 4 = угол 1 + угол 3 3) угол 4 = угол 2 + угол 3 4) угол 4 = 2 умножить на угол 3 5) угол 4 = 180 - угол 1
Ответы (1)
1. Полупериметр параллелограмма равен 32 см. Меньшая сторона его равна 15 см. Чему равна большая сторона параллелограмма? 2. Острый угол параллелограмма равен 66°. Чему равен тупой угол параллелограмма? 3.
Ответы (1)
Найдите неизвестные углы равнобокой трапеции ABCD, в тех случаях, когда: а) угол А равен 75° б) угол B=3 углам А в) угол B - угол А = 60° г) угол А + угол B + угол С = 300° д) угол А + угол B + угол D = 250° е) угол B + 3 угла А = 300°
Ответы (1)
1) Один из углов параллелограмма на 50 градусов меньше другого. Найдите углы параллелограмма. 2) Сторона параллелограмма втрое больше другой его стороны. Найдите стороны параллелограмма, если его периметр равен 24 см.
Ответы (1)
Высоты параллелограмма, проведенные из вершины тупого угла, образуют угол 30 градусов. найти площадь параллелограмма, если его стороны равны 16 см и 20 см
Ответы (1)