Задать вопрос

Два стрелка независимо друг от друга стреляют по мишени. вероятность попадания в мишень первого стрелка равна 0,4; верояиность попадания второго стрелка 0.3. Найти вероятность следующих событий; певый стрелок промахнулся, второй попал

+2
Ответы (1)
  1. 24 ноября, 14:43
    0
    1. Вероятность события A, состоящего в том, что первый стрелок попадет в мишень, равна:

    P (A) = 0,4.

    Вероятность противоположного события A', что он промахнется, равна:

    P (A') = 1 - P (A) = 1 - 0,4 = 0,6.

    2. Вероятность события B, состоящего в том, что второй стрелок попадет в мишень, равна:

    P (B) = 0,3.

    3. События A и B независимы, поэтому вероятность события X, состоящего в том, что первый стрелок промахнулся, а второй попал, равна:

    P (X) = P (A') * P (B); P (X) = 0,6 * 0,3 = 0,18.

    Ответ: 0,18.
Знаешь ответ на этот вопрос?
Сомневаешься в правильности ответа?
Получи верный ответ на вопрос 🏆 «Два стрелка независимо друг от друга стреляют по мишени. вероятность попадания в мишень первого стрелка равна 0,4; верояиность попадания ...» по предмету 📕 Математика, используя встроенную систему поиска. Наша обширная база готовых ответов поможет тебе получить необходимые сведения!
Найти готовые ответы
Похожие вопросы математике
Три стрелка попадают в мишень с вероятностями 0,9; 0,2; 0,1. Стрелки производят залп по мишени. Найдите вероятности событий:A1 - только 2 - ой стрелок попал в мишень; A2 - только 3 - ий стрелок не попал в мишень;
Ответы (1)
Два стрелка независимо друг от друга стреляют по одной и той же мишени, делая каж-дый по одному выстрелу. Вероятность попадания в мишень для первого стрелка равна 098; для второго 0,7;. После стрельбы в мишени обнаружена одна пробоина.
Ответы (1)
Два стрелка одновременно, независимо друг от друга стреляют по мишени. Вероятность попадания в мишень для первого стрелка равна 0,5, а для второго стрелка - 0,9. Какова вероятность того, что мишень будет поражена?
Ответы (1)
Два стрелка независимо друг от друга стреляют о одной мишени, делая каждый по одному выстрелу. Вероятность попадания в мишень для первого 0.8, для второго 0.7. После стрельбы 1 пробоина. Найти вероятность, что в мишень попал первый.
Ответы (1)
Два стрелка стреляют по мишени. Вероятность попадания в мишень при одном выстреле первым стрелком равна 0,6, вторым - 0,8. Найти вероятность того, что при одном залпе в мишень попадут (а) только один стрелок (б) хотя бы один стрелок (в) оба стрелка
Ответы (1)